Displacement Control
- Command_Manual
- Tcl Commands
- Modeling_Commands
- model
- uniaxialMaterial
- ndMaterial
- frictionModel
- section
- geometricTransf
- element
- node
- sp commands
- mp commands
- timeSeries
- pattern
- mass
- block commands
- region
- rayleigh
- Analysis Commands
- Output Commands
- Misc Commands
- DataBase Commands
This command is used to construct a DisplacementControl integrator object. In an analysis step with Displacement Control we seek to determine the time step that will result in a displacement increment for a particular degree-of-freedom at a node to be a prescribed value.
integrator DisplacementControl $node $dof $incr <$numIter $minLambda $maxLambda> |
$node | node whose response controls solution |
$dof | degree of freedom at the node, valid options: 1 through ndf at node. |
$incr | first displacement increment <math>\Delta U_{\text{dof}}</math> |
$numIter | the number of iterations the user would like to occur in the solution algorithm. Optional, default = 1.0. |
$min \Delta_U | the min stepsize the user will allow. optional, defualt = <math>\Delta U_{min} = \Delta U_0</math> |
$max \Delta_U | the max stepsize the user will allow. optional, default = <math>\Delta U_{max} = \Delta U_0</math> |
EXAMPLE:
integrator DisplacementControl 1 2 0.1; # displacement control algorithm seking constant increment of 0.1 at node 1 at 2'nd dof.
THEORY:
If we write the governing finite element equation at <math>t + \Delta t\!</math>as:
- <math> R(U_{t+\Delta t}, \lambda_{t+\Delta t}) = \lambda_{t+\Delta t} F^{ext} - F(U_{t+\Delta t}) \!</math>
where <math>F(U_{t+\Delta t})\!</math> are the internal forces which are a function of the displacements <math>U_{t+\Delta t}\!</math>, <math>F^{ext}\!</math> is the set of reference loads and <math>\lambda\!</math> is the load multiplier. Linearizing the equation results in:
- <math> K_{t+\Delta t}^{*i} \Delta U_{t+\Delta t}^{i+1} = \left ( \lambda^i_{t+\Delta t} + \Delta \lambda^i \right ) F^{ext} - F(U_{t+\Delta t})</math>
This equation represents n equations in <math> n+1</math> unknowns, and so an additional equation is needed to solve the equation. For displacement control, we introduce a new constraint equation in which in each analysis step we set to ensure that the displacement increment for the degree-of-freedom <math>\text{dof}</math> at the specified node is:
- <math> \Delta U_\text{dof} = \text{incr}\!</math>
MORE TO COME:
In Displacement Control the $\Delta_U\text{dof}$ set to <math>t + \lambda_{t+1}</math> where,
- <math> \Delta^U\text{dof} {t+1} = \max \left ( \DeltaU_{min}, \min \left ( \Delta_U\text{dof}_{max}, \frac{\text{numIter}}{\text{lastNumIter}} \Delta_U\text{dof}^{t} \right ) \right ) </math>
Code Developed by: fmk