SteelMPF - Menegotto and Pinto (1973) Model Extended by Filippou et al. (1983)

From OpenSeesWiki
Revision as of 06:25, 15 July 2015 by Kkolozvari (talk | contribs)
Jump to navigation Jump to search




Developed and Implemented by:

Kristijan Kolozvari, California State University, Fullerton

Kutay Orakcal, Bogazici University, Istanbul, Turkey

John Wallace, Univeristy of California, Los Angeles

This command is used to construct a uniaxialMaterial SteelMPF, which represents the well-known uniaxial constitutive nonlinear hysteretic material model for steel proposed by Menegotto and Pinto (1973), and extended by Filippou et al. (1983) to include isotropic strain hardening effects. The relationship is in the form of curved transitions (Figure 1), each from a straight-line asymptote with slope E0 (modulus of elasticity) to another straight-line asymptote with slope E1 = bE0 (yield modulus) where b is the strain hardening ratio. The curvature of the transition curve between the two asymptotes is governed by a cyclic curvature parameter R, which permits the Bauschinger effect to be represented, and is dependent on the absolute strain difference between the current asymptote intersection point and the previous maximum or minimum strain reversal point depending on whether the current strain is increasing or decreasing, respectively. The strain and stress pairs (εrr) and (ε00) shown on Figure 1 are updated after each strain reversal.

Source: /usr/local/cvs/OpenSees/SRC/material/uniaxial/

Figure 1. Constitutive Model for Steel (Menegotto and Pinto, 1973)

Input Format:

uniaxialMaterial SteelMPF $mattag $fyp $fyn $E0 $bp $bn $R0 $a1 $a2 <$a3 $a4>
$mattag Unique uniaxialMaterial tag
$fyp Yield strength in tension (positive loading direction)
$fyn Yield strength in compression (negative loading direction)
$E0 Initial tangent modulus
$bp Strain hardening ratio in tension (positive loading direction)
$bn Strain hardening ratio in compression (negative loading direction)
$R0 Initial value of the curvature parameter R (R0 = 20 recommended)
$a1 Curvature degradation parameter (a1 = 18.5 recommended)
$a2 Curvature degradation parameter (a2 = 0.15 or 0.0015 recommended)
$a3 Isotropic hardening parameter (optional, default = 0.01)
$a4 Isotropic hardening parameter (optional, default = 7.0)

Example:

uniaxialMaterial SteelMPF 1 60 60 29000 0.02 0.02 20.0 18.5 0.15


Discussion:

Although the Menegotto-Pinto model is already available in OpenSees (e.g., Steel02), the formulation of SteelMPF introduces several distinctive features compared to existing models. For example, the model allows definition of different yield stress values and strain hardening ratios for tension and compression, and it considers degradation of cyclic curvature parameter R for strain reversals in both pre- and post- yielding regions, which could produce more accurate predictions of yield capacity for some RC wall specimens (element MVLEM Example 1), whereas Steel02 considers the degradation in post-yielding region only. Strain-stress relationships obtained using SteelMPF and Steel02 are compared in Figure 2 for a strain history that includes strain reversals at strain values equal to one-half of the yield strain (e.i., <math>\epsilon</math>r = ±0.001 = <math>\epsilon</math>y/2). The model also allows calibration of isotropic hardening parameters through optional input variables a3 and a4, and uses default values of a3 = 0.01 and a4 = 7.0 as calibrated by Filippou et al. (1983) based on test results. To disregard isotropic strain hardening behavior in SteelMPF, parameter a3 needs to be assigned a zero value (a3 = 0.0).

Figure 2. Comparison of Steel02 and SteelMPF

References:

1) Filippou F.C., Popov, E.P., and Bertero, V.V. (1983). "Effects of Bond Deterioration on Hysteretic Behavior of Reinforced Concrete Joints". Report EERC 83-19, Earthquake Engineering Research Center, University of California, Berkeley.

2) Menegotto, M., and Pinto, P.E. (1973). Method of analysis of cyclically loaded RC plane frames including changes in geometry and non-elastic behavior of elements under normal force and bending. Preliminary Report IABSE, vol 13.