Damage2p
- Command_Manual
- Tcl Commands
- Modeling_Commands
- model
- uniaxialMaterial
- ndMaterial
- frictionModel
- section
- geometricTransf
- element
- node
- sp commands
- mp commands
- timeSeries
- pattern
- mass
- block commands
- region
- rayleigh
- Analysis Commands
- Output Commands
- Misc Commands
- DataBase Commands
This command is used to construct a three-dimensional material object that has a Drucker-Prager plasticity model coupled with a two-parameter damage model.
nDMaterial Damage2p $matTag $fcc <-fct $fct> <-E $E> <-ni $ni> <-Gt $Gt> <-Gc $Gc> <-rho_bar $rho_bar> <-H $H> <-theta $theta> <-tangent $tangent> |
$matTag | integer tag identifying material |
$fcc | concrete compressive strength |
$fct | optional concrete tensile strength |
$E | optional Young modulus |
$ni | optional Poisson coefficient |
$Gt | optional tension fracture energy density |
$Gc | optional compression fracture energy density |
$rho_bar | ptional parameter of plastic volume change |
$H | optional linear hardening parameter for plasticity |
$theta | optional ratio between isotropic and kinematic hardening |
$tangent | optional integer to choose the computational stiffness matrix |
The material formulations for the Damage2p object are "ThreeDimensional" and "PlaneStrain"
This code has been Developed by: Leopoldo Tesser - Dept. DICEA - Univeristy of Padua - Italy, contact leopoldo.tesser AT dicea.unipd.it
NOTES
1. Admissible values: The input parameters vary as follows:
$fcc | negative real value (positive input is changed in sign automatically) |
$fct | positive real value (for concrete like materials is less than $fcc) |
$Gt | positive real value (integral of the stress-strain envelope in tension) |
$Gc | positive real value (integral of the stress-strain envelope after the peak in compression) |
$rhoBar | positive real value 0=rhoBar<sqrt(2/3) |
$H | positive real value (usually less than $E) |
$theta | positive real value 0=$theta=1 (with: 0 hardening kinematic only and 1 hardening isotropic only |
$tangent | 0: computational tangent; 1: damaged secant stiffness (hint: in case of strong nonlinearities use it with Krylov-Newton algorithm) |
- Default values: The Damage2p object hve the following defualt parameters:
$fct | = 0.1*abs(fcc) | |||
$E | = 4750*sqrt(abs(fcc)) if abs(fcc)<2000 because fcc is assumed in MPa (see ACI 318) | = 57000*sqrt(abs(fcc)) if abs(fcc)>2000 because fcc is assumed in psi (see ACI 318) | ||
$ni' | = 0.15 (from comparison with tests by Kupfer Hilsdorf Rusch 1969) | |||
'$Gt | = 1840*fct*fct/E (from comparison with tests by Gopalaratnam and Shah 1985) | |||
$Gc | = 6250*fcc*fcc/E (from comparison with tests by Karsan and Jirsa 1969) | |||
$rhoBar | = 0.2 (from comparison with tests by Kupfer Hilsdorf Rusch 1969) | |||
$H | = 0.25*E (from comparison with tests by Karsan and Jirsa 1969 and Gopalaratnam and Shah 1985) | |||
'$theta | = 0.5 (from comparison with tests by Karsan and Jirsa 1969 and Gopalaratnam and Shah 1985) | _ | $tangent | = 0 |
Example
This example provides the input file and corresponding results for a confined triaxial compression (CTC) test using a single 8-node brick element and the Drucker-Prager constitutive model. A schematic representation of this test is shown below, (a) depicts the application of hydrostatic pressure, and (b) depicts the application of the deviator stress. Also shown is the stress path resulting from this test plotted on the meridian plane. As shown, the element is loaded until failure, at which point the model can no longer converge, as this is a stress-controlled analysis.
#########################################################
# #
# File is generated for the purposes of testing the #
# Drucker-Prager model --> conventional triaxial #
# compression test #
# #
# Created: 03.16.2009 CRM #
# Updated: 12.02.2011 CRM #
# #
# ---> Basic units used are kN and meters #
# #
#########################################################
#-------------------------------------------------------
# create the modelBuilder and build the model
#-------------------------------------------------------
wipe
model BasicBuilder -ndm 3 -ndf 3
#--create the nodes
node 1 1.0 0.0 0.0
node 2 1.0 1.0 0.0
node 3 0.0 1.0 0.0
node 4 0.0 0.0 0.0
node 5 1.0 0.0 1.0
node 6 1.0 1.0 1.0
node 7 0.0 1.0 1.0
node 8 0.0 0.0 1.0
#--triaxial test boundary conditions
fix 1 0 1 1
fix 2 0 0 1
fix 3 1 0 1
fix 4 1 1 1
fix 5 0 1 0
fix 6 0 0 0
fix 7 1 0 0
fix 8 1 1 0
#--define material parameters for the model
#---bulk modulus
set k 27777.78
#---shear modulus
set G 9259.26
#---yield stress
set sigY 5.0
#---failure surface and associativity
set rho 0.398
set rhoBar 0.398
#---isotropic hardening
set Kinf 0.0
set Ko 0.0
set delta1 0.0
#---kinematic hardening
set H 0.0
set theta 1.0
#---tension softening
set delta2 0.0
#---mass density
set mDen 1.7
#--material models
# type tag k G sigY rho rhoBar Kinf Ko delta1 delta2 H theta density
nDMaterial DruckerPrager 2 $k $G $sigY $rho $rhoBar $Kinf $Ko $delta1 $delta2 $H $theta $mDen
#--create the element
# type tag nodes matID bforce1 bforce2 bforce3
element stdBrick 1 1 2 3 4 5 6 7 8 2 0.0 0.0 0.0
puts "model Built..."
#-------------------------------------------------------
# create the recorders
#-------------------------------------------------------
set step 0.1
# record nodal displacements
recorder Node -file displacements1.out -time -dT $step -nodeRange 1 8 -dof 1 2 3 disp
# record the element stress, strain, and state at one of the Gauss points
recorder Element -ele 1 -time -file stress1.out -dT $step material 2 stress
recorder Element -ele 1 -time -file strain1.out -dT $step material 2 strain
recorder Element -ele 1 -time -file state1.out -dT $step material 2 state
puts "recorders set..."
#-------------------------------------------------------
# create the loading
#-------------------------------------------------------
#--pressure magnitude
set p 10.0
set pNode [expr -$p/4]
#--loading object for hydrostatic pressure
pattern Plain 1 {Series -time {0 10 100} -values {0 1 1} -factor 1} {
load 1 $pNode 0.0 0.0
load 2 $pNode $pNode 0.0
load 3 0.0 $pNode 0.0
load 5 $pNode 0.0 0.0
load 6 $pNode $pNode 0.0
load 7 0.0 $pNode 0.0
}
#--loading object deviator stress
pattern Plain 2 {Series -time {0 10 100} -values {0 1 5} -factor 1} {
load 5 0.0 0.0 $pNode
load 6 0.0 0.0 $pNode
load 7 0.0 0.0 $pNode
load 8 0.0 0.0 $pNode
}
#-------------------------------------------------------
# create the analysis
#-------------------------------------------------------
integrator LoadControl 0.1
numberer RCM
system SparseGeneral
constraints Transformation
test NormDispIncr 1e-5 10 1
algorithm Newton
analysis Static
puts "starting the hydrostatic analysis..."
set startT [clock seconds]
analyze 1000
set endT [clock seconds]
puts "triaxial shear application finished..."
puts "loading analysis execution time: [expr $endT-$startT] seconds."
wipe
References
Tesser L.,"Efficient 3-D plastic damage model for cyclic inelastic analysis of concrete structures", Report of the University of Padua, Italy, 2012. (soon available at paduareserach.cab.unipd.it)
Petek K.A., "Development and application of mixed beam-solid models for analysis of soil-pile interaction problems", Ph.D. dissertation, Univerisity of Washington, USA, 2006