J2 Plasticity Material: Difference between revisions
No edit summary |
No edit summary |
||
Line 9: | Line 9: | ||
---- | ---- | ||
{| | {| |
Revision as of 21:15, 3 March 2010
- Command_Manual
- Tcl Commands
- Modeling_Commands
- model
- uniaxialMaterial
- ndMaterial
- frictionModel
- section
- geometricTransf
- element
- node
- sp commands
- mp commands
- timeSeries
- pattern
- mass
- block commands
- region
- rayleigh
- Analysis Commands
- Output Commands
- Misc Commands
- DataBase Commands
This command is used to construct an multi dimensional material object that has a von Mises (J2) yield criterium and isotropic hardening.
nDmaterial J2Plasticity $matTag $K $G $sig0 $sigInf $delta $H |
$matTag | integer tag identifying material |
$E | elastic Modulus |
$G | shear Modulus |
$sig0 | initial yield stress |
$sigInf | final saturation yield stress |
$delta | exponential hardening parameter |
$H | linear hardening parameter |
The material formulations for the J2 object are "ThreeDimensional," "PlaneStrain," "Plane Stress," "AxiSymmetric," and "PlateFiber."
THEORY:
The theory for the non hardening case can be found [[1]]
J2 isotropic hardening material class
Elastic Model
<math> \sigma = K*trace(\epsilon_e) + (2*G)*dev(\epsilon_e)</math>
Yield Function
<math> \phi(\sigma,q) = || dev(\sigma) || - \sqrt(\tfrac{2}{3}*q(xi)</math>
Saturation Isotropic Hardening with linear term
<math> q(xi) = \sigma_0 + (\sigma_\inf - \sigma_0)*exp(-delta*\xi) + H*\xi </math>
Flow Rules
<math> \dot {\epsilon_p} = \gamma * \frac{\partial \phi}{\partial \sigma} </math>
<math> \dot \xi = -\gamma * \frac{\partial \phi}{\partial q} </math>
Linear Viscosity
<math>\gamma = \frac{\phi}{\eta} </math> ( if <math> \phi > 0</math> )
Backward Euler Integration Routine Yield condition enforced at time n+1
set <math> \eta = 0 </math> for rate independent case
Code Developed by: Ed Love