ViscousDamper Material: Difference between revisions

From OpenSeesWiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
{{CommandManualMenu}}
{{CommandManualMenu}}


This command is used to construct a ViscousDamper material, which represents the Maxwell Model (linear spring and nonlinear dashpot in series). The Maxwell material simulates the hysteretic response of viscous dampers.
This command is used to construct a ViscousDamper material, which represents the Maxwell Model (linear spring and nonlinear dashpot in series). The ViscousDamper material simulates the hysteretic response of viscous dampers.


{|  
{|  
Line 51: Line 51:
'''References''':
'''References''':
{|
{|
|  style="width:5px" | '''[1]''' || Olsson, A.K., and Austrell, P-E., (2001), "A fitting procedure for viscoelastic-elastoplastic material models," Proceedings of the Second European Conference on Constitutive Models for Rubber, Germany, 2001.
|  style="width:5px" | '''[1]''' || Oohara, K., and Kasai, K. (2002), “Time-History Analysis Models for Nonlinear Viscous Dampers”, Proc. Structural Engineers World Congress (SEWC), Yokohama, JAPAN, CD-ROM, T2-2-b-3 (in Japanese).
|-
|-
|'''[2]''' || Ottosen, N.S., and Ristinmaa, M., (1999). "The mechanics of constitutive modelling, (Numerical and thermodynamical topics)," Lund University,Division of Solid Mechanics, Sweden, 1999.
|'''[2]''' || Kasai K, Oohara K. “Algorithm and Computer Code To Simulate Response of Nonlinear Viscous Damper” Passively Controlled Structure Symposium 2001, Yokohama, Japan (in Japanese).  
|-
|-
|}
|}
Code Developed by : <span style="color:blue"> Prof. Kazuhiko Kasai (Tokyo Institute of Technology) and implemented by '''''[http://dimitrios-lignos.research.mcgill.ca/PAkcelyan.html Sarven Akcelyan]''''' & '''''[http://dimitrios-lignos.research.mcgill.ca/PLignos.html Prof. Dimitrios G. Lignos]''''', (McGill University) </span>
Code Developed by : <span style="color:blue"> Prof. Kazuhiko Kasai (Tokyo Institute of Technology) and implemented by '''''[http://dimitrios-lignos.research.mcgill.ca/PAkcelyan.html Sarven Akcelyan]''''' & '''''[http://dimitrios-lignos.research.mcgill.ca/PLignos.html Prof. Dimitrios G. Lignos]''''', (McGill University) </span>

Revision as of 23:23, 21 August 2013




This command is used to construct a ViscousDamper material, which represents the Maxwell Model (linear spring and nonlinear dashpot in series). The ViscousDamper material simulates the hysteretic response of viscous dampers.

uniaxialMaterial ViscousDamper $matTag $K $Cd $alpha

$matTag integer tag identifying material
$K Elastic stiffness of linear spring (to model the axial flexibility of a viscous damper (brace and damper portion)
$Cd Viscous parameter of damper
$alpha Viscous damper exponent

Examples:

1. Input parameters:
Assume a viscous damper with axial stiffness K=300.0kN/mm, viscous parameter Cd=280.3kN(s/mm)0.3, and exponent a=0.30.
The input parameters for the material should be as follows:
uniaxialMaterial ViscousDamper 1 300 280.3 0.30
Using these properties, Figure 1 shows the hysteretic response of this damper for sinusoidal displacement increments of 12, 24 and 36mm and a frequency f = 0.5Hz.
The sensitivity of the viscous damper with respect to its axial stiffness is shown in Figures 2 to 4 for the following set of parameters:
Viscous Damper with various input parameter variations
2. Single story single bay frame with viscous damper

References:

[1] Oohara, K., and Kasai, K. (2002), “Time-History Analysis Models for Nonlinear Viscous Dampers”, Proc. Structural Engineers World Congress (SEWC), Yokohama, JAPAN, CD-ROM, T2-2-b-3 (in Japanese).
[2] Kasai K, Oohara K. “Algorithm and Computer Code To Simulate Response of Nonlinear Viscous Damper” Passively Controlled Structure Symposium 2001, Yokohama, Japan (in Japanese).

Code Developed by : Prof. Kazuhiko Kasai (Tokyo Institute of Technology) and implemented by Sarven Akcelyan & Prof. Dimitrios G. Lignos, (McGill University)