BandSPD SOE: Difference between revisions
(Created page with '{{CommandManualMenu}} This command is used to construct a BandSPDSOE linear system of equation object. As the name implies, this class is used for symmetric positive definite ma...') |
No edit summary |
||
Line 16: | Line 16: | ||
THEORY: | THEORY: | ||
An ''n''×''n'' matrix ''A''=(''a''<sub>''i,j'' </sub>) is a ''' | An ''n''×''n'' matrix ''A''=(''a''<sub>''i,j'' </sub>) is a '''symmmetric banded matrix''' if all matrix elements are zero outside a diagonally bordered band whose range is determined by constants ''k'': | ||
:<math>a_{i,j}=0 \quad\mbox{if}\quad j<i- | :<math>a_{i,j}=0 \quad\mbox{if}\quad j<i-k \quad\mbox{ or }\quad j>i+k; \quad k \ge 0.\,</math> | ||
:<math>a_{i,j} = a_{j,i}\,</math> | |||
The ''bandwidth'' of the matrix is ''k'' + ''k'' + 1. | |||
For example, a symmetric 6-by-6 matrix with a right bandwidth of 2: | For example, a symmetric 6-by-6 matrix with a right bandwidth of 2: |
Revision as of 01:19, 9 March 2010
- Command_Manual
- Tcl Commands
- Modeling_Commands
- model
- uniaxialMaterial
- ndMaterial
- frictionModel
- section
- geometricTransf
- element
- node
- sp commands
- mp commands
- timeSeries
- pattern
- mass
- block commands
- region
- rayleigh
- Analysis Commands
- Output Commands
- Misc Commands
- DataBase Commands
This command is used to construct a BandSPDSOE linear system of equation object. As the name implies, this class is used for symmetric positive definite matrix systems which have a banded profile. The matrix is stored as shown below in a 1 dimensional array of size equal to the (bandwidth/2) times the number of unknowns. When a solution is required, the Lapack routines are used. To following command is used to construct such a system:
system BandSPD |
NOTES:
THEORY:
An n×n matrix A=(ai,j ) is a symmmetric banded matrix if all matrix elements are zero outside a diagonally bordered band whose range is determined by constants k:
- <math>a_{i,j}=0 \quad\mbox{if}\quad j<i-k \quad\mbox{ or }\quad j>i+k; \quad k \ge 0.\,</math>
- <math>a_{i,j} = a_{j,i}\,</math>
The bandwidth of the matrix is k + k + 1.
For example, a symmetric 6-by-6 matrix with a right bandwidth of 2:
- <math>
\begin{bmatrix}
A_{11} & A_{12} & A_{13} & 0 & \cdots & 0 \\ & A_{22} & A_{23} & A_{24} & \ddots & \vdots \\ & & A_{33} & A_{34} & A_{35} & 0 \\ & & & A_{44} & A_{45} & A_{46} \\ & sym & & & A_{55} & A_{56} \\ & & & & & A_{66}
\end{bmatrix}. </math> This matrix is stored as the 6-by-3 matrix:
- <math>
\begin{bmatrix}
A_{11} & A_{12} & A_{13} \\ A_{22} & A_{23} & A_{24} \\ A_{33} & A_{34} & A_{35} \\ A_{44} & A_{45} & A_{46} \\ A_{55} & A_{56} & 0 \\ A_{66} & 0 & 0
\end{bmatrix}. </math>
- <math>
\begin{bmatrix}
B_{11} & B_{12} & 0 & \cdots & \cdots & 0 \\ B_{21} & B_{22} & B_{23} & \ddots & \ddots & \vdots \\ 0 & B_{32} & B_{33} & B_{34} & \ddots & \vdots \\ \vdots & \ddots & B_{43} & B_{44} & B_{45} & 0 \\ \vdots & \ddots & \ddots & B_{54} & B_{55} & B_{56} \\ 0 & \cdots & \cdots & 0 & B_{65} & B_{66}
\end{bmatrix} </math> is stored as the 6-by-3 matrix
- <math>
\begin{bmatrix}
0 & B_{11} & B_{12}\\ B_{21} & B_{22} & B_{23} \\ B_{32} & B_{33} & B_{34} \\ B_{43} & B_{44} & B_{45} \\ B_{54} & B_{55} & B_{56} \\ B_{65} & B_{66} & 0
\end{bmatrix}. </math>
Code Developed by: fmk