OpenSees Examples Manual -- Structural Models & Anlyses: Difference between revisions

From OpenSeesWiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 44: Line 44:
|-
|-
| style="color:#000;" | <div >
| style="color:#000;" | <div >
*data
*overview of basic OpenSees input structure
*coordinates, boundary conditions, element connectivity, nodal masses, nodal loads, etc.
*two-node, one element
</div>
</div>
|}
|}
Line 53: Line 55:
|-
|-
| style="color:#000;" | <div >
| style="color:#000;" | <div >
*data
*elastic elements
</div>
</div>
|}
|}
Line 62: Line 64:
|-
|-
| style="color:#000;" | <div >
| style="color:#000;" | <div >
*data
*static pushover
*dynamic earthquake-input
</div>
</div>
|}
|}
Line 91: Line 94:
|-
|-
| style="color:#000;" | <div >
| style="color:#000;" | <div >
*data
*two element types
*distributed element loads
</div>
</div>
|}
|}
Line 100: Line 104:
|-
|-
| style="color:#000;" | <div >
| style="color:#000;" | <div >
*data
*elastic elements
</div>
</div>
|}
|}
Line 109: Line 113:
|-
|-
| style="color:#000;" | <div >
| style="color:#000;" | <div >
*data
*static pushover
*dynamic earthquake-input
</div>
</div>
|}
|}
Line 142: Line 147:
|-
|-
| style="color:#000;" | <div >
| style="color:#000;" | <div >
*data
*introduce variable: define & use
</div>
</div>
|}
|}
Line 151: Line 156:
|-
|-
| style="color:#000;" | <div >
| style="color:#000;" | <div >
*data
*elastic element
</div>
</div>
|}
|}
Line 160: Line 165:
|-
|-
| style="color:#000;" | <div >
| style="color:#000;" | <div >
*data
*static pushover
*dynamic earthquake-input
</div>
</div>
|}
|}
Line 189: Line 195:
|-
|-
| style="color:#000;" | <div >
| style="color:#000;" | <div >
*data
*first example of nonlinear model, set nonlinearity at section level
</div>
</div>
|}
|}
Line 198: Line 204:
|-
|-
| style="color:#000;" | <div >
| style="color:#000;" | <div >
*data
*nonlinearBeamColumn element
*uniaxial section
 
</div>
</div>
|}
|}
Line 207: Line 215:
|-
|-
| style="color:#000;" | <div >
| style="color:#000;" | <div >
*data
*static pushover
*dynamic earthquake-input
</div>
</div>
|}
|}
Line 236: Line 245:
|-
|-
| style="color:#000;" | <div >
| style="color:#000;" | <div >
*data
*set nonlinearity at material level
*material stress-strain response is assembled into fiber section
*reinforced-concrete fiber section
</div>
</div>
|}
|}
Line 245: Line 256:
|-
|-
| style="color:#000;" | <div >
| style="color:#000;" | <div >
*data
*nonlinearBeamColumn element
*uniaxial material
*fiber section (Reinforced-concrete fiber section)
</div>
</div>
|}
|}
Line 254: Line 267:
|-
|-
| style="color:#000;" | <div >
| style="color:#000;" | <div >
*data
*static pushover
*dynamic earthquake-input
</div>
</div>
|}
|}
Line 288: Line 302:
|-
|-
| style="color:#000;" | <div >
| style="color:#000;" | <div >
*data
*units, defined and used (they will be used in all subsequent examples)
*separate model-building and analysis files
*introduce PDelta effects (or not)
</div>
</div>
|}
|}
Line 297: Line 313:
|-
|-
| style="color:#000;" | <div >
| style="color:#000;" | <div >
*data
*elastic elements
*inelastic uniaxial section
*fiber section (Reinforced-concrete fiber section)
*Linear, PDelta or Corotational Transformation
</div>
</div>
|}
|}
Line 306: Line 325:
|-
|-
| style="color:#000;" | <div >
| style="color:#000;" | <div >
*data
*static pushover
*dynamic earthquake-input
</div>
</div>
|}
|}
Line 335: Line 355:
|-
|-
| style="color:#000;" | <div >
| style="color:#000;" | <div >
*data
*use previously-defined procedures to simplify input
*introduce more analysis types
*introduce procedure to read database input motion files (data with text in first lines)
</div>
</div>
|}
|}
Line 344: Line 366:
|-
|-
| style="color:#000;" | <div >
| style="color:#000;" | <div >
*data
*elastic elements
*inelastic uniaxial section
*inelastic fiber section (Reinforced-concrete fiber section)
</div>
</div>
|}
|}
Line 353: Line 377:
|-
|-
| style="color:#000;" | <div >
| style="color:#000;" | <div >
*data
*static reversed cyclic analysis
*dynamic sine-wave input analysis (uniform excitation)
*dynamic earthquake-input analysis (uniform excitation)
*dynamic sine-wave input analysis (multiple-support excitation)
*dynamic earthquake-input analysis (multiple-support excitation)
*dynamic bidirectional earthquake-input analysis (uniform excitation)
</div>
</div>
|}
|}
Line 382: Line 411:
|-
|-
| style="color:#000;" | <div >
| style="color:#000;" | <div >
*data
*2D frame of fixed geometry: 3-story, 3-bay
*nodes and elements are defined manually, one by one
</div>
</div>
|}
|}
Line 391: Line 421:
|-
|-
| style="color:#000;" | <div >
| style="color:#000;" | <div >
*data
*Reinforced-Concrete Section
*Steel W-Section
*elastic uniaxial section
*inelastic uniaxial section
*inelastic fiber section
</div>
</div>
|}
|}
Line 400: Line 434:
|-
|-
| style="color:#000;" | <div >
| style="color:#000;" | <div >
*data
*static reversed cyclic analysis
*dynamic sine-wave input analysis (uniform excitation)
*dynamic earthquake-input analysis (uniform excitation)
*dynamic sine-wave input analysis (multiple-support excitation)
*dynamic earthquake-input analysis (multiple-support excitation)
*dynamic bidirectional earthquake-input analysis (uniform excitation)
</div>
</div>
|}
|}
Line 429: Line 468:
|-
|-
| style="color:#000;" | <div >
| style="color:#000;" | <div >
*data
*2D frame geometry of variable geometry ( # stories and # bays are variables)
*node and element definition is automated
*use previously-defined procedures to view model node numbers and elements, deformed shape, and displacement history, in 2D
</div>
</div>
|}
|}
Line 438: Line 479:
|-
|-
| style="color:#000;" | <div >
| style="color:#000;" | <div >
*data
*Reinforced-Concrete Section
*Steel W-Section
*elastic uniaxial section
*inelastic uniaxial section
*inelastic fiber section
</div>
</div>
|}
|}
Line 447: Line 492:
|-
|-
| style="color:#000;" | <div >
| style="color:#000;" | <div >
*data
*static reversed cyclic analysis
*dynamic sine-wave input analysis (uniform excitation)
*dynamic earthquake-input analysis (uniform excitation)
*dynamic sine-wave input analysis (multiple-support excitation)
*dynamic earthquake-input analysis (multiple-support excitation)
*dynamic bidirectional earthquake-input analysis (uniform excitation)
</div>
</div>
|}
|}
Line 480: Line 530:
|-
|-
| style="color:#000;" | <div >
| style="color:#000;" | <div >
*data
*3D frame of fixed geometry
*nodes and elements are manually manually, one by one
*introduce rigid floor diaphragm
*use previously-defined procedures to view model node numbers and elements, deformed shape, and displacement history, in 3D
</div>
</div>
|}
|}
Line 489: Line 542:
|-
|-
| style="color:#000;" | <div >
| style="color:#000;" | <div >
*data
*Reinforced-Concrete Section
*Steel W-Section
*Elastic or Fiber Section option is a variable within one input file
*rigid diaphragm
</div>
</div>
|}
|}
Line 498: Line 554:
|-
|-
| style="color:#000;" | <div >
| style="color:#000;" | <div >
*data
*static reversed cyclic analysis
*dynamic sine-wave input analysis (uniform excitation)
*dynamic earthquake-input analysis (uniform excitation)
*dynamic sine-wave input analysis (multiple-support excitation)
*dynamic earthquake-input analysis (multiple-support excitation)
*dynamic bidirectional earthquake-input analysis (uniform excitation)
</div>
</div>
|}
|}
Line 527: Line 588:
|-
|-
| style="color:#000;" | <div >
| style="color:#000;" | <div >
*data
*3D frame geometry of variable geometry ( # stories and # bays in X and Z are variables)
*node and element definition is automated
*introduce user-input interface, the user is given the option as to what to view in model
</div>
</div>
|}
|}
Line 536: Line 599:
|-
|-
| style="color:#000;" | <div >
| style="color:#000;" | <div >
*data
*Reinforced-Concrete Section
*Steel W-Section
*Elastic or Fiber Section option is a variable within one input file
*optional rigid diaphragm
</div>
</div>
|}
|}
Line 545: Line 611:
|-
|-
| style="color:#000;" | <div >
| style="color:#000;" | <div >
*data
*static reversed cyclic analysis
*dynamic sine-wave input analysis (uniform excitation)
*dynamic earthquake-input analysis (uniform excitation)
*dynamic sine-wave input analysis (multiple-support excitation)
*dynamic earthquake-input analysis (multiple-support excitation)
*dynamic bidirectional earthquake-input analysis (uniform excitation)
 
</div>
</div>
|}
|}
Line 579: Line 651:
|-
|-
| style="color:#000;" | <div >
| style="color:#000;" | <div >
*data
*defined section using uniaxial behavior (define moment-curvature curve) or
*define section using uniaxial materials (define stress curve) in fiber section
</div>
</div>
|}
|}
Line 588: Line 661:
|-
|-
| style="color:#000;" | <div >
| style="color:#000;" | <div >
*data
*Uniaxial Nonlinear section
*Fiber Steel W-section
*Fiber RC symmetric rectangular unconfined-concrete section
*Fiber RC symmetric rectangular unconfined & confined-concrete section
*Fiber RC generalized rectangular section
*Fiber RC generalized circular section
</div>
</div>
|}
|}
Line 597: Line 675:
|-
|-
| style="color:#000;" | <div >
| style="color:#000;" | <div >
*data
*2D static unidirectional moment-curvature analysis
*3D static unidirectional moment-curvature analysis
</div>
</div>
|}
|}

Revision as of 23:15, 9 November 2009



Introduction

The following examples are listed in order of simplicity. NOTE: gravity analysis is always included as part of the model building


OpenSees Examples -- Introductory Examples

Objectives
  • overview of basic OpenSees input structure
  • coordinates, boundary conditions, element connectivity, nodal masses, nodal loads, etc.
  • two-node, one element
Models
  • elastic elements
Analyses
  • static pushover
  • dynamic earthquake-input
Objectives
  • two element types
  • distributed element loads
Models
  • elastic elements
Analyses
  • static pushover
  • dynamic earthquake-input


OpenSees Examples -- Simple Nonlinear Analysis Examples

Objectives
  • introduce variable: define & use
Models
  • elastic element
Analyses
  • static pushover
  • dynamic earthquake-input
Objectives
  • first example of nonlinear model, set nonlinearity at section level
Models
  • nonlinearBeamColumn element
  • uniaxial section
Analyses
  • static pushover
  • dynamic earthquake-input
Objectives
  • set nonlinearity at material level
  • material stress-strain response is assembled into fiber section
  • reinforced-concrete fiber section
Models
  • nonlinearBeamColumn element
  • uniaxial material
  • fiber section (Reinforced-concrete fiber section)
Analyses
  • static pushover
  • dynamic earthquake-input



OpenSees Examples -- 2D Structural Modelling & Analysis Examples

Objectives
  • units, defined and used (they will be used in all subsequent examples)
  • separate model-building and analysis files
  • introduce PDelta effects (or not)
Models
  • elastic elements
  • inelastic uniaxial section
  • fiber section (Reinforced-concrete fiber section)
  • Linear, PDelta or Corotational Transformation
Analyses
  • static pushover
  • dynamic earthquake-input
Objectives
  • use previously-defined procedures to simplify input
  • introduce more analysis types
  • introduce procedure to read database input motion files (data with text in first lines)
Models
  • elastic elements
  • inelastic uniaxial section
  • inelastic fiber section (Reinforced-concrete fiber section)
Analyses
  • static reversed cyclic analysis
  • dynamic sine-wave input analysis (uniform excitation)
  • dynamic earthquake-input analysis (uniform excitation)
  • dynamic sine-wave input analysis (multiple-support excitation)
  • dynamic earthquake-input analysis (multiple-support excitation)
  • dynamic bidirectional earthquake-input analysis (uniform excitation)
Objectives
  • 2D frame of fixed geometry: 3-story, 3-bay
  • nodes and elements are defined manually, one by one
Models
  • Reinforced-Concrete Section
  • Steel W-Section
  • elastic uniaxial section
  • inelastic uniaxial section
  • inelastic fiber section
Analyses
  • static reversed cyclic analysis
  • dynamic sine-wave input analysis (uniform excitation)
  • dynamic earthquake-input analysis (uniform excitation)
  • dynamic sine-wave input analysis (multiple-support excitation)
  • dynamic earthquake-input analysis (multiple-support excitation)
  • dynamic bidirectional earthquake-input analysis (uniform excitation)
Objectives
  • 2D frame geometry of variable geometry ( # stories and # bays are variables)
  • node and element definition is automated
  • use previously-defined procedures to view model node numbers and elements, deformed shape, and displacement history, in 2D
Models
  • Reinforced-Concrete Section
  • Steel W-Section
  • elastic uniaxial section
  • inelastic uniaxial section
  • inelastic fiber section
Analyses
  • static reversed cyclic analysis
  • dynamic sine-wave input analysis (uniform excitation)
  • dynamic earthquake-input analysis (uniform excitation)
  • dynamic sine-wave input analysis (multiple-support excitation)
  • dynamic earthquake-input analysis (multiple-support excitation)
  • dynamic bidirectional earthquake-input analysis (uniform excitation)


OpenSees Examples -- 3D Structural Modelling & Analysis Examples

Objectives
  • 3D frame of fixed geometry
  • nodes and elements are manually manually, one by one
  • introduce rigid floor diaphragm
  • use previously-defined procedures to view model node numbers and elements, deformed shape, and displacement history, in 3D
Models
  • Reinforced-Concrete Section
  • Steel W-Section
  • Elastic or Fiber Section option is a variable within one input file
  • rigid diaphragm
Analyses
  • static reversed cyclic analysis
  • dynamic sine-wave input analysis (uniform excitation)
  • dynamic earthquake-input analysis (uniform excitation)
  • dynamic sine-wave input analysis (multiple-support excitation)
  • dynamic earthquake-input analysis (multiple-support excitation)
  • dynamic bidirectional earthquake-input analysis (uniform excitation)
Objectives
  • 3D frame geometry of variable geometry ( # stories and # bays in X and Z are variables)
  • node and element definition is automated
  • introduce user-input interface, the user is given the option as to what to view in model
Models
  • Reinforced-Concrete Section
  • Steel W-Section
  • Elastic or Fiber Section option is a variable within one input file
  • optional rigid diaphragm
Analyses
  • static reversed cyclic analysis
  • dynamic sine-wave input analysis (uniform excitation)
  • dynamic earthquake-input analysis (uniform excitation)
  • dynamic sine-wave input analysis (multiple-support excitation)
  • dynamic earthquake-input analysis (multiple-support excitation)
  • dynamic bidirectional earthquake-input analysis (uniform excitation)



OpenSees Examples -- Section Modelling And Analysis Examples

Objectives
  • defined section using uniaxial behavior (define moment-curvature curve) or
  • define section using uniaxial materials (define stress curve) in fiber section
Models
  • Uniaxial Nonlinear section
  • Fiber Steel W-section
  • Fiber RC symmetric rectangular unconfined-concrete section
  • Fiber RC symmetric rectangular unconfined & confined-concrete section
  • Fiber RC generalized rectangular section
  • Fiber RC generalized circular section
Analyses
  • 2D static unidirectional moment-curvature analysis
  • 3D static unidirectional moment-curvature analysis




Return to OpenSees User