Hilber-Hughes-Taylor Method

From OpenSeesWiki
Revision as of 00:01, 20 January 2010 by Fmk (talk | contribs) (Created page with 'This command is used to construct a Hilber-Hughes-Taylor (HHT) integration object. {| | style="background:yellow; color:black; width:800px" | '''integrator HHT $alpha''' |} …')
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

This command is used to construct a Hilber-Hughes-Taylor (HHT) integration object.

integrator HHT $alpha

$alpha <math>\alpha</math> factor

EXAMPLE:


integrator HHT 0.5


NOTES:

  1. If the accelerations are chosen as the unknowns and <math>\beta</math> is chosen as 0, the formulation results in the fast but conditionally stable explicit Central Difference method. Otherwise the method is implicit and requires an iterative solution process.
  2. Two common sets of choices are
    1. Average Acceleration Method (<math>\gamma=\tfrac{1}{2}, \beta = \tfrac{1}{4}</math>)
    2. Constant Acceleration Method (<math>\gamma=\tfrac{1}{2}, \beta = \tfrac{1}{6}</math>)

REFERENCES

Hilber, H.M, Hughes,T.J.R and Talor, R.L. "Improved Numerical Dissipation for Time Integration Algorithms in Structural Dynamics" Earthquake Engineering and Structural Dynamics, 5:282-292, 1977.




THEORY:


The HHT method (sometimes called the <math \alpha</math> method, is a one step implicit method for solving the transient problem which attempts to increase the amount of numerical damping present without degrading the order of accuracy. In the HHT the same Newmark approximations are used

<math> U_{t+\Delta t} = U_t + \Delta t \dot U_t + [(0.5 - \beta) \Delta t^2] \ddot U_t + [\beta \Delta t^2] \ddot U_{t+\Delta t}</math>

<math> \dot U_{t+\Delta t} = \dot U_t + [(1-\gamma)\Delta t] \ddot U_t + [\gamma \Delta t ] \ddot U_{t+\Delta t} </math>

but the time-discrete equation of motion is used:

<math>M \ddot U_{t + \Delta t} + R(U_{t + \alpha, \dot U_{t+\alpha}) = F_{t+\Delta t} </math>


<math> M \ddot U_{t + \Delta t} + + (1 + \alpha) C \dot U_{t + \Delta t} - |alpha C \dot U_t + R(U_{t + \Delta t}) = F_{t + \Delta t} </math>

Using the Taylor series approximation of <math>U_{t+\Delta t}</math> and <math>\dot U_{t+\Delta t}</math>:

<math> U_{t+\Delta t} = U_t + \Delta t \dot U_t + \tfrac{\Delta t^2}{2} \ddot U_t + \tfrac{\Delta t^3}{6} \dot \ddot U_t + \cdots </math>

<math> \dot U_{t+\Delta t} = \dot U_t + \Delta t \ddot U_t + \tfrac{\Delta t^2}{2} \dot \ddot U_t + \cdots </math>

Newton truncated these using the following:

<math> U_{t+\Delta t} = u_t + \Delta t \dot U_t + \tfrac{\Delta t^2}{2} \ddot U + \beta {\Delta t^3} \dot \ddot U </math>

<math> \dot U_{t + \Delta t} = \dot U_t + \Delta t \ddot U_t + \gamma \Delta t^2 \dot \ddot U </math>

in which he assumed linear acceleration within a time step, i.e.

<math> \dot \ddot U = \frac{{\ddot U_{t+\Delta t}} - \ddot U_t}{\Delta t} </math>

which results in the following expressions:

<math> U_{t+\Delta t} = U_t + \Delta t \dot U_t + [(0.5 - \beta) \Delta t^2] \ddot U_t + [\beta \Delta t^2] \ddot U_{t+\Delta t}</math>

<math> \dot U_{t+\Delta t} = \dot U_t + [(1-\gamma)\Delta t] \ddot U_t + [\gamma \Delta t ] \ddot U_{t+\Delta t} </math>

The variables <math>\beta</math> and <math>\gamma</math> are numerical parameters that control both the stability of the method and the amount of numerical damping introduced into the system by the method. For <math>\gamma=\tfrac{1}{2}</math> there is no numerical damping; for <math>\gamma>=\tfrac{1}{2}</math> numerical damping is introduced. Two well known and commonly used cases are:

  1. Average Acceleration Method (<math>\gamma=\tfrac{1}{2}, \beta = \tfrac{1}{4}</math>)
  2. Constant Acceleration Method (<math>\gamma=\tfrac{1}{2}, \beta = \tfrac{1}{6}</math>)


The advancement of the nonlinear solution from one step to the next requires setting initial conditions at the first trial step<math> U_{t+\Delta t}^0, \dot U_{t+\Delta t}^0, \ddot U_{t+\Delta t}^0</math> linearization of the equation, and solution of the linearized equations and updating. When the displacements are the unknowns this results in the following:

1) Initial Conditions at a time step: For an implicit solution we choose:

<math>U_{t+\Delta t}^0 = U_t</math>

The values for the velocity and accelerations are determined using the Newmark formulas.

<math>\dot U_{t+\Delta t}^0 = (1 - \frac{\gamma}{\beta}) \dot U_t + \Delta t(1 - \frac{\gamma}{2 \beta}) \ddot U_t</math>

<math>\ddot U_{t+\Delta t}^0 = - \frac{1}{\beta \Delta t} \dot U_t - (\frac{1}{2 \beta} -1) \ddot U_t </math>

2) Linearizing the Newmark formulas

<math>dU_{t+\Delta t}^{i+1} = \beta \Delta t^2 d \ddot U_{t+\Delta t}^{i+1}</math>

<math>d \dot U_{t+\Delta t}^{i+1} = \gamma \Delta t \ddot U_{t+\Delta t}^{i+1}</math>

giving the update formula when displacement increment is used as unknown as:

<math>U_{t+\Delta t}^{i+1} = U_{t+\Delta t}^i + dU_{t+\Delta t}^{i+1}</math>

<math>\dot U_{t+\Delta t}^{i+1} = \dot U_{t+\Delta t}^i + \frac{\gamma}{\beta \Delta t}dU_{t+\Delta t}^{i+1}</math>

<math>\ddot U_{t+\Delta t}^{i+1} = \ddot U_{t+\Delta t}^i + \frac{1}{\beta \Delta t^2}dU_{t+\Delta t}^{i+1}</math>

The linearization of the momentum equation using the displacements as the unknowns leads to the following

<math> K_{t+\Delta t}^{*i} d U_{t+\Delta t}^{i+1} = P_{t+\Delta t}^i</math>

where

<math>K_{t+\Delta t}^{*i} = K_t + \frac{\gamma}{\beta \Delta t} C_t + \frac{1}{\beta \Delta t^2} M</math>

and

<math> P_{t+\Delta t}^i = F_{t + \Delta t} - R(U_{t + \Delta t}^{i-1}) - C \dot U_{t+\Delta t}^{i-1} - M \ddot U_{t+ \Delta t}^{i-1}</math>



Code Developed by: fmk