Hilber-Hughes-Taylor Method: Difference between revisions

From OpenSeesWiki
Jump to navigation Jump to search
No edit summary
Line 2: Line 2:


{|  
{|  
| style="background:yellow; color:black; width:800px" | '''integrator HHT $alpha'''
| style="background:yellow; color:black; width:800px" | '''integrator HHT $alpha <$gamma $beta> '''
|}
|}


Line 9: Line 9:
{|
{|
|  style="width:150px" | '''$alpha ''' || <math>\alpha</math> factor
|  style="width:150px" | '''$alpha ''' || <math>\alpha</math> factor
|-
|'''$gamma''' || <math>\gamma</math> factor
|-
|'''$beta''' || <math>\beta</math> factor
|}
|}


Line 20: Line 24:


NOTES:
NOTES:
# If the accelerations are chosen as the unknowns and <math>\beta</math> is chosen as 0, the formulation results in the fast but conditionally stable explicit Central Difference method. Otherwise the method is implicit and requires an iterative solution process.
# <math>\gamma</math> and <math>\beta</math>are optional. the default values are
# Two common sets of choices are
 
## Average Acceleration Method (<math>\gamma=\tfrac{1}{2}, \beta = \tfrac{1}{4}</math>)
<math> \beta = \frac{(2 - \gamma)^2}{4}</math>
## Constant Acceleration Method (<math>\gamma=\tfrac{1}{2}, \beta = \tfrac{1}{6}</math>)
 
and
 
<math> \gamma = \frac{3}{2} - \alpha</math>


REFERENCES
REFERENCES
Line 44: Line 51:
but the time-discrete equation of motion is modified:
but the time-discrete equation of motion is modified:


<math>M \ddot U_{t + \Delta t} + R(U_{t + \alpha \Delta t}, \dot U_{t+\alpha \Delta t}) = F_{t+\Delta t} </math>
<math>M \ddot U_{t + \Delta t} + C U_{t+\alpha \Delta t} + R(U_{t + \alpha \Delta t}) = F_{t+\Delta t} </math>


where the displacements and velocities at the intermediate point is given by:
where the displacements and velocities at the intermediate point is given by:


<math>U_{t+\alpha \Delta t} = (1-\alpha)U_t + \alpha U_{t + \Delta t}</math>
<math>U_{t+ \alpha \Delta t} = (1 - \alpha) U_t + \alpha U_{t + \Delta t}</math>


<math>\dot U_{t+\alpha \Delta t} = (1-\alpha) \dot U_t + \alpha \dot U_{t + \Delta t}</math>
<math>\dot U_{t+\alpha \Delta t} = (1-\alpha) \dot U_t + \alpha \dot U_{t + \Delta t}</math>




Line 70: Line 76:
<math>dU_{t+\Delta t}^{i+1} = \beta \Delta t^2 d \ddot U_{t+\Delta t}^{i+1}</math>
<math>dU_{t+\Delta t}^{i+1} = \beta \Delta t^2 d \ddot U_{t+\Delta t}^{i+1}</math>


<math>d \dot U_{t+\Delta t}^{i+1} = \gamma \Delta t \ddot U_{t+\Delta t}^{i+1}</math>
<math>\dot U_{t+\Delta t}^{i+1} = \gamma \Delta t \ddot U_{t+\Delta t}^{i+1}</math>


giving the update formula when displacement increment is used as unknown as:
giving the update formula when displacement increment is used as unknown as:
Line 90: Line 96:
and
and


<math> P_{t+\Delta t}^i = F_{t + \Delta t} - R(U_{t + \Delta t}^{i-1}) - C \dot U_{t+\Delta t}^{i-1} - M \ddot U_{t+ \Delta t}^{i-1}</math>
<math> P_{t+\Delta t}^i = F_{t + \Delta t} - R(U_{t + \alpha \Delta t}^{i-1}) - C \dot U_{t+\alpha \Delta t}^{i-1} - M \ddot U_{t+ \Delta t}^{i-1}</math>





Revision as of 01:02, 20 January 2010

This command is used to construct a Hilber-Hughes-Taylor (HHT) integration object.

integrator HHT $alpha <$gamma $beta>

$alpha <math>\alpha</math> factor
$gamma <math>\gamma</math> factor
$beta <math>\beta</math> factor

EXAMPLE:


integrator HHT 0.5


NOTES:

  1. <math>\gamma</math> and <math>\beta</math>are optional. the default values are

<math> \beta = \frac{(2 - \gamma)^2}{4}</math>

and

<math> \gamma = \frac{3}{2} - \alpha</math>

REFERENCES

Hilber, H.M, Hughes,T.J.R and Talor, R.L. "Improved Numerical Dissipation for Time Integration Algorithms in Structural Dynamics" Earthquake Engineering and Structural Dynamics, 5:282-292, 1977.




THEORY:


The HHT method (sometimes called the <math> \alpha</math> method) is a one step implicit method for solving the transient problem which attempts to increase the amount of numerical damping present without degrading the order of accuracy. In the HHT the same Newmark approximations are used

<math> U_{t+\Delta t} = U_t + \Delta t \dot U_t + [(0.5 - \beta) \Delta t^2] \ddot U_t + [\beta \Delta t^2] \ddot U_{t+\Delta t}</math>

<math> \dot U_{t+\Delta t} = \dot U_t + [(1-\gamma)\Delta t] \ddot U_t + [\gamma \Delta t ] \ddot U_{t+\Delta t} </math>

but the time-discrete equation of motion is modified:

<math>M \ddot U_{t + \Delta t} + C U_{t+\alpha \Delta t} + R(U_{t + \alpha \Delta t}) = F_{t+\Delta t} </math>

where the displacements and velocities at the intermediate point is given by:

<math>U_{t+ \alpha \Delta t} = (1 - \alpha) U_t + \alpha U_{t + \Delta t}</math>

<math>\dot U_{t+\alpha \Delta t} = (1-\alpha) \dot U_t + \alpha \dot U_{t + \Delta t}</math>


The advancement of the nonlinear solution from one step to the next requires setting initial conditions at the first trial step<math> U_{t+\Delta t}^0, \dot U_{t+\Delta t}^0, \ddot U_{t+\Delta t}^0</math> linearization of the equation, and solution of the linearized equations and updating. When the displacements are the unknowns this results in the following:

1) Initial Conditions at a time step: For an implicit solution we choose:

<math>U_{t+\Delta t}^0 = U_t</math>

The values for the velocity and accelerations are determined using the Newmark formulas.

<math>\dot U_{t+\Delta t}^0 = (1 - \frac{\gamma}{\beta}) \dot U_t + \Delta t(1 - \frac{\gamma}{2 \beta}) \ddot U_t</math>

<math>\ddot U_{t+\Delta t}^0 = - \frac{1}{\beta \Delta t} \dot U_t - (\frac{1}{2 \beta} -1) \ddot U_t </math>

2) Linearizing the Newmark formulas

<math>dU_{t+\Delta t}^{i+1} = \beta \Delta t^2 d \ddot U_{t+\Delta t}^{i+1}</math>

<math>\dot U_{t+\Delta t}^{i+1} = \gamma \Delta t \ddot U_{t+\Delta t}^{i+1}</math>

giving the update formula when displacement increment is used as unknown as:

<math>U_{t+\Delta t}^{i+1} = U_{t+\Delta t}^i + dU_{t+\Delta t}^{i+1}</math>

<math>\dot U_{t+\Delta t}^{i+1} = \dot U_{t+\Delta t}^i + \frac{\gamma}{\beta \Delta t}dU_{t+\Delta t}^{i+1}</math>

<math>\ddot U_{t+\Delta t}^{i+1} = \ddot U_{t+\Delta t}^i + \frac{1}{\beta \Delta t^2}dU_{t+\Delta t}^{i+1}</math>

The linearization of the momentum equation using the displacements as the unknowns leads to the following

<math> K_{t+\Delta t}^{*i} d U_{t+\Delta t}^{i+1} = P_{t+\Delta t}^i</math>

where

<math>K_{t+\Delta t}^{*i} = \alpha K_t + \frac{\alpha \gamma}{\beta \Delta t} C_t + \frac{1}{\beta \Delta t^2} M</math>

and

<math> P_{t+\Delta t}^i = F_{t + \Delta t} - R(U_{t + \alpha \Delta t}^{i-1}) - C \dot U_{t+\alpha \Delta t}^{i-1} - M \ddot U_{t+ \Delta t}^{i-1}</math>



Code Developed by: fmk