Newmark Method: Difference between revisions

From OpenSeesWiki
Jump to navigation Jump to search
(Created page with 'The Newmark method is an implicit time-stepping method for solving the transient problem: <math> M \ddot U_{t+\Delta t} + C \dot U_{t+\Delta t} + R(U,\dot U)_{t+\Delta t} = F_{t…')
 
No edit summary
Line 1: Line 1:
The Newmark method is an implicit time-stepping method for solving the transient problem:
This command is used to construct a Newmark integrator object.


<math> M \ddot U_{t+\Delta t} + C \dot U_{t+\Delta t} + R(U,\dot U)_{t+\Delta t} = F_{t+\Delta t}</math}
{|
| style="background:yellow; color:black; width:800px" | '''integrator Newmark $gamma $beta'''
|}


Using the Taylor series approximation of <math>U_{t+\Delta t}</math>
----
and <math>\dot U_{t+\Delta t}</math>:


<math> u_{t+\Delta t} = u_t + \Delta t \dot u_t + \tfrac{\Delta t^2}{2} \ddot u_t + \tfrac{\Delta t^3}{6} \dot \ddot u_t + \cdots </math>
{|
|  style="width:150px" | '''$gamma ''' || <math>\gamma</math> factor
|-
|  '''$beta''' || <math>\beta</math> factor


<math> \dot u_{t+\Delta t} = \dot u_t + \Delta t \ddot u_t + \tfrac{\Delta t^2}{2} \dot \ddot u_t +  \cdots </math>
|}
 
----
 
EXAMPLE:
 
 
integrator Newmark 0.5 0.25
 
 
NOTES:
1) If the accelerations are chosen as the unknowns and <math>\beta</math> is chosen as 0, the formulation results in the fast but conditionally stable explicit Central Difference method. Otherwise the method is implicit and requires an iterative solution process.
2) Two common sets of choices are
# Average Acceleration Method (<math>\gamma=\tfrac{1}{2}, \beta = \tfrac{1}{4}</math>)
# Constant Acceleration Method (<math>\gamma=\tfrac{1}{2}, \beta = \tfrac{1}{6}</math>)
 
REFERENCES
 
Newmark, N.M. "A Method of Computation for Structural Dynamics" ASCE Journal of Engineering Mechanics Division, Vol 85. No EM3, 1959.
 
 
----
 
 
THEORY:
 
 
The Newmark method is a one step method for solving the transient problem:
 
<math> M \ddot U_{t + \Delta t} + C \dot U_{t + \Delta t} + R_{t + \Delta t} = F_{t + \Delta t} </math>                             
 
Using the Taylor series approximation of <math>U_{t+\Delta t}</math> and <math>\dot U_{t+\Delta t}</math>:
 
<math> U_{t+\Delta t} = U_t + \Delta t \dot U_t + \tfrac{\Delta t^2}{2} \ddot U_t + \tfrac{\Delta t^3}{6} \dot \ddot U_t + \cdots </math>
 
<math> \dot U_{t+\Delta t} = \dot U_t + \Delta t \ddot U_t + \tfrac{\Delta t^2}{2} \dot \ddot U_t +  \cdots </math>


Newton truncated these using the following:
Newton truncated these using the following:


<math> u_{t+\Delta t} = u_t + \Delta t \dot u_t + \tfrac{\Delta t^2}{2} \ddot u +  \beta {\Delta t^3} \dot \ddot u </math>
<math> U_{t+\Delta t} = u_t + \Delta t \dot U_t + \tfrac{\Delta t^2}{2} \ddot U +  \beta {\Delta t^3} \dot \ddot U </math>


<math> \dot u_{t + \Delta t} = \dot u_t + \Delta t \ddot u_t + \gamma \Delta t^2 \dot \ddot u </math>
<math> \dot U_{t + \Delta t} = \dot U_t + \Delta t \ddot U_t + \gamma \Delta t^2 \dot \ddot U </math>


and he further assumed linear acceleration within a time step, i.e.
in which he assumed linear acceleration within a time step, i.e.


<math> \dot \ddot u = \frac{{\ddot u_{t+\Delta t}} -  \ddot u_t}{\Delta t} </math>
<math> \dot \ddot U = \frac{{\ddot U_{t+\Delta t}} -  \ddot U_t}{\Delta t} </math>


which results in the following expressions:
which results in the following expressions:


<math> u_{t+\Delta t} = u_t + \Delta t \dot u_t + [(0.5 - \beta) \Delta t^2] \ddot u_t + [\beta \Delta t^2]  \ddot u_{t+\Delta t}</math>
<math> U_{t+\Delta t} = U_t + \Delta t \dot U_t + [(0.5 - \beta) \Delta t^2] \ddot U_t + [\beta \Delta t^2]  \ddot U_{t+\Delta t}</math>
 
<math> \dot U_{t+\Delta t} = \dot U_t + [(1-\gamma)\Delta t] \ddot U_t + [\gamma \Delta t ] \ddot U_{t+\Delta t} </math>
 
The variables <math>\beta</math> and <math>\gamma</math> are numerical parameters that control both the stability of the method and the amount of numerical damping introduced into the system by the method. For <math>\gamma=\tfrac{1}{2}</math> there is no numerical damping; for <math>\gamma>=\tfrac{1}{2}</math> numerical damping is introduced. Two well known and commonly used cases are:
# Average Acceleration Method (<math>\gamma=\tfrac{1}{2}, \beta = \tfrac{1}{4}</math>)
# Constant Acceleration Method (<math>\gamma=\tfrac{1}{2}, \beta = \tfrac{1}{6}</math>)
 
 
 
The advancement of the nonlinear solution from one step to the next requires setting initial conditions at the first trial step<math> U_{t+\Delta t}^0, \dot U_{t+\Delta t}^0, \ddot U_{t+\Delta t}^0</math> linearization of the equation, and solution of the linearized equations and updating.
 
1) Initial Conditions at a time step: For an implicit solution using the displacements <math>U</math> as the unknowns we choose <math>U_{t+\Delta t}^0=U_t</math>. The values for the velocity and accelerations are determined using the Newmark formulas.
 
2) Linearizing the Newmark formulas
 
The linearization of the momentum equation using the displacements as the unknowns leads to the following
 
<math> K_{t+\Delta t}^{*i} d U_{t+\Delta t}^{i+1} = F_{t+\Delta t}^i</math>
 
<math>K_{t+\Delta t}^{*i} = K_t + \frac{\gamma}{\beta \Delta t^2} C_t + \frac{1}{\beta \Delta t^2} M</math>
 
3) Updating
 
<math>dU_{t+\Delta t}^{i+1} = \beta \Delta t^2 d \ddot U_{t+\Delta t}^{i+1}</math>
 
<math>d \dot U_{t+\Delta t}^{i+1} = \gamma \Delta t U_{t+\Delta t}^{i+1}</math>
 
which results in the following update formula
 
 
<math>U_{t+\Delta t}^{i+1} = U_{t+\Delta t}^{i+1} + dU_{t+\Delta t}^{i+1}</math>
 
<math>\dot U_{t+\Delta t}^{i+1} = \dot U_{t+\Delta t}^{i+1} + \frac{\gamma}{\beta \Delta t}dU_{t+\Delta t}^{i+1}</math>
 
<math>\ddot U_{t+\Delta t}^{i+1} = \ddot U_{t+\Delta t}^{i+1} + \frac{1}{\beta \Delta t^2}dU_{t+\Delta t}^{i+1}</math>
 
----


<math> \dot u_{t+\Delta t} = \dot u_t + [(1-\gamma)\Delta t] \ddot u_t + [\gamma \Delta t ] \ddot u_{t+\Delta t} </math>
Code Developed by: <span style="color:blue"> fmk </span>

Revision as of 21:13, 13 January 2010

This command is used to construct a Newmark integrator object.

integrator Newmark $gamma $beta

$gamma <math>\gamma</math> factor
$beta <math>\beta</math> factor

EXAMPLE:


integrator Newmark 0.5 0.25


NOTES: 1) If the accelerations are chosen as the unknowns and <math>\beta</math> is chosen as 0, the formulation results in the fast but conditionally stable explicit Central Difference method. Otherwise the method is implicit and requires an iterative solution process. 2) Two common sets of choices are

  1. Average Acceleration Method (<math>\gamma=\tfrac{1}{2}, \beta = \tfrac{1}{4}</math>)
  2. Constant Acceleration Method (<math>\gamma=\tfrac{1}{2}, \beta = \tfrac{1}{6}</math>)

REFERENCES

Newmark, N.M. "A Method of Computation for Structural Dynamics" ASCE Journal of Engineering Mechanics Division, Vol 85. No EM3, 1959.




THEORY:


The Newmark method is a one step method for solving the transient problem:

<math> M \ddot U_{t + \Delta t} + C \dot U_{t + \Delta t} + R_{t + \Delta t} = F_{t + \Delta t} </math>

Using the Taylor series approximation of <math>U_{t+\Delta t}</math> and <math>\dot U_{t+\Delta t}</math>:

<math> U_{t+\Delta t} = U_t + \Delta t \dot U_t + \tfrac{\Delta t^2}{2} \ddot U_t + \tfrac{\Delta t^3}{6} \dot \ddot U_t + \cdots </math>

<math> \dot U_{t+\Delta t} = \dot U_t + \Delta t \ddot U_t + \tfrac{\Delta t^2}{2} \dot \ddot U_t + \cdots </math>

Newton truncated these using the following:

<math> U_{t+\Delta t} = u_t + \Delta t \dot U_t + \tfrac{\Delta t^2}{2} \ddot U + \beta {\Delta t^3} \dot \ddot U </math>

<math> \dot U_{t + \Delta t} = \dot U_t + \Delta t \ddot U_t + \gamma \Delta t^2 \dot \ddot U </math>

in which he assumed linear acceleration within a time step, i.e.

<math> \dot \ddot U = \frac{{\ddot U_{t+\Delta t}} - \ddot U_t}{\Delta t} </math>

which results in the following expressions:

<math> U_{t+\Delta t} = U_t + \Delta t \dot U_t + [(0.5 - \beta) \Delta t^2] \ddot U_t + [\beta \Delta t^2] \ddot U_{t+\Delta t}</math>

<math> \dot U_{t+\Delta t} = \dot U_t + [(1-\gamma)\Delta t] \ddot U_t + [\gamma \Delta t ] \ddot U_{t+\Delta t} </math>

The variables <math>\beta</math> and <math>\gamma</math> are numerical parameters that control both the stability of the method and the amount of numerical damping introduced into the system by the method. For <math>\gamma=\tfrac{1}{2}</math> there is no numerical damping; for <math>\gamma>=\tfrac{1}{2}</math> numerical damping is introduced. Two well known and commonly used cases are:

  1. Average Acceleration Method (<math>\gamma=\tfrac{1}{2}, \beta = \tfrac{1}{4}</math>)
  2. Constant Acceleration Method (<math>\gamma=\tfrac{1}{2}, \beta = \tfrac{1}{6}</math>)


The advancement of the nonlinear solution from one step to the next requires setting initial conditions at the first trial step<math> U_{t+\Delta t}^0, \dot U_{t+\Delta t}^0, \ddot U_{t+\Delta t}^0</math> linearization of the equation, and solution of the linearized equations and updating.

1) Initial Conditions at a time step: For an implicit solution using the displacements <math>U</math> as the unknowns we choose <math>U_{t+\Delta t}^0=U_t</math>. The values for the velocity and accelerations are determined using the Newmark formulas.

2) Linearizing the Newmark formulas

The linearization of the momentum equation using the displacements as the unknowns leads to the following

<math> K_{t+\Delta t}^{*i} d U_{t+\Delta t}^{i+1} = F_{t+\Delta t}^i</math>

<math>K_{t+\Delta t}^{*i} = K_t + \frac{\gamma}{\beta \Delta t^2} C_t + \frac{1}{\beta \Delta t^2} M</math>

3) Updating

<math>dU_{t+\Delta t}^{i+1} = \beta \Delta t^2 d \ddot U_{t+\Delta t}^{i+1}</math>

<math>d \dot U_{t+\Delta t}^{i+1} = \gamma \Delta t U_{t+\Delta t}^{i+1}</math>

which results in the following update formula


<math>U_{t+\Delta t}^{i+1} = U_{t+\Delta t}^{i+1} + dU_{t+\Delta t}^{i+1}</math>

<math>\dot U_{t+\Delta t}^{i+1} = \dot U_{t+\Delta t}^{i+1} + \frac{\gamma}{\beta \Delta t}dU_{t+\Delta t}^{i+1}</math>

<math>\ddot U_{t+\Delta t}^{i+1} = \ddot U_{t+\Delta t}^{i+1} + \frac{1}{\beta \Delta t^2}dU_{t+\Delta t}^{i+1}</math>


Code Developed by: fmk