Drucker Prager: Difference between revisions

From OpenSeesWiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 25: Line 25:
|  '''$rho ''' || frictional strength parameter
|  '''$rho ''' || frictional strength parameter
|-
|-
|  '''$rhoBar ''' || non-associative parameter
|  '''$rhoBar ''' || non-associative parameter,  0 ≤ $rhoBar ≤ $rho
|-
|-
|  '''$Kinf ''' || nonlinear isotropic strain hardening parameter
|  '''$Kinf ''' || nonlinear isotropic strain hardening parameter,  $Kinf ≥ 0
|-
|-
|  '''$Ko ''' || nonlinear isotropic strain hardening parameter
|  '''$Ko ''' || nonlinear isotropic strain hardening parameter,  $Ko ≥ 0
|-
|-
|  '''$delta1 ''' || nonlinear isotropic strain hardening parameter
|  '''$delta1 ''' || nonlinear isotropic strain hardening parameter,  $delta1 ≥ 0
|-
|-
|  '''$delta2 ''' || tension softening parameter
|  '''$delta2 ''' || tension softening parameter,  $delta2 ≥ 0
|-
|-
|  '''$H ''' || linear kinematic strain hardening parameter
|  '''$H ''' || linear kinematic strain hardening parameter,  $H ≥ 0
|-
|-
|  '''$theta ''' || strain hardening proportion parameter
|  '''$theta ''' || controls relative proportions of isotropic and kinematic hardening,  0 ≤ $theta ≤ 1
|-
|-
|}
|}

Revision as of 01:27, 2 February 2010

This command is used to construct an multi dimensional material object that has a Drucker-Prager yield criterium.

nDmaterial DruckerPrager $matTag $k $G $sigmaY $rho $rhoBar $Kinf $Ko $delta1 $delta2 $H $theta




This Code has been Developed by: Peter Mackenzie, U Washington and the great Pedro Arduino, U Washington



$matTag integer tag identifying material
$k bulk modulus
$G shear modulus
$sigmaY yield stress
$rho frictional strength parameter
$rhoBar non-associative parameter, 0 ≤ $rhoBar ≤ $rho
$Kinf nonlinear isotropic strain hardening parameter, $Kinf ≥ 0
$Ko nonlinear isotropic strain hardening parameter, $Ko ≥ 0
$delta1 nonlinear isotropic strain hardening parameter, $delta1 ≥ 0
$delta2 tension softening parameter, $delta2 ≥ 0
$H linear kinematic strain hardening parameter, $H ≥ 0
$theta controls relative proportions of isotropic and kinematic hardening, 0 ≤ $theta ≤ 1

The material formulations for the Drucker-Prager object are "ThreeDimensional," "PlaneStrain," "Plane Stress," "AxiSymmetric".


EXAMPLE

An example like ZeroLengthContactNTS2D would be nice


THEORY:

The theory for the Drucker-Prager yield criterion can be found at wikipedia here

The the nonlinear isotropic hardening term in the Drucker-Prager yield function is defined as

<math> K (\alpha_1) = \sigma_Y + \theta H \alpha + (K_{\infty} - K_o) \exp(-\delta_1 \alpha_1)</math>

The kinematic strain hardening is defined as

<math> H(\alpha_1) = (1 - \theta) H</math>

Tension softening is defined as

<math> T(\alpha_2) = T_o \exp(-\delta_2 \alpha_2)</math>

in which

<math> T_o = \sqrt{\frac{2}{3}} \frac{\sigma_Y}{\rho}</math>

defines the tension cutoff surface.


REFERENCES;

Drucker, D. C. and Prager, W., "Soil mechanics and plastic analysis for limit design. Quarterly of Applied Mathematics, vol. 10, no. 2, pp. 157–165, 1952.