Drucker Prager: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 27: | Line 27: | ||
| '''$rhoBar ''' || non-associative parameter | | '''$rhoBar ''' || non-associative parameter | ||
|- | |- | ||
| '''$Kinf ''' || isotropic strain hardening parameter | | '''$Kinf ''' || nonlinear isotropic strain hardening parameter | ||
|- | |- | ||
| '''$Ko ''' || isotropic strain hardening parameter | | '''$Ko ''' || nonlinear isotropic strain hardening parameter | ||
|- | |- | ||
| '''$delta1 ''' || isotropic strain hardening parameter | | '''$delta1 ''' || nonlinear isotropic strain hardening parameter | ||
|- | |- | ||
| '''$delta2 ''' || tension softening parameter | | '''$delta2 ''' || tension softening parameter | ||
|- | |- | ||
| '''$H ''' || kinematic strain hardening parameter | | '''$H ''' || linear kinematic strain hardening parameter | ||
|- | |- | ||
| '''$theta ''' || kinematic strain hardening parameter | | '''$theta ''' || linear kinematic strain hardening parameter | ||
|- | |- | ||
|} | |} |
Revision as of 20:31, 1 February 2010
This command is used to construct an multi dimensional material object that has a Drucker-Prager yield criterium.
nDmaterial DruckerPrager $matTag $k $G $sigmaY $rho $rhoBar $Kinf $Ko $delta1 $delta2 $H $theta |
This Code has been Developed by: Peter Mackenzie, U Washington and the great Pedro Arduino, U Washington
$matTag | integer tag identifying material |
$k | bulk modulus |
$G | shear modulus |
$sigmaY | yield stress |
$rho | frictional strength parameter |
$rhoBar | non-associative parameter |
$Kinf | nonlinear isotropic strain hardening parameter |
$Ko | nonlinear isotropic strain hardening parameter |
$delta1 | nonlinear isotropic strain hardening parameter |
$delta2 | tension softening parameter |
$H | linear kinematic strain hardening parameter |
$theta | linear kinematic strain hardening parameter |
The material formulations for the Drucker-Prager object are "ThreeDimensional," "PlaneStrain," "Plane Stress," "AxiSymmetric".
EXAMPLE
An example like ZeroLengthContactNTS2D would be nice
THEORY:
The theory for Drucker-Prager can be found at wikipedia here
REFERENCES;
Drucker, D. C. and Prager, W., "Soil mechanics and plastic analysis for limit design. Quarterly of Applied Mathematics, vol. 10, no. 2, pp. 157–165, 1952.