Newmark Method: Difference between revisions
No edit summary |
No edit summary |
||
Line 75: | Line 75: | ||
2) Linearizing the Newmark formulas | 2) Linearizing the Newmark formulas | ||
<math>dU_{t+\Delta t}^{i+1} = \beta \Delta t^2 d \ddot U_{t+\Delta t}^{i+1}</math> | <math>dU_{t+\Delta t}^{i+1} = \beta \Delta t^2 d \ddot U_{t+\Delta t}^{i+1}</math> | ||
<math>d \dot U_{t+\Delta t}^{i+1} = \gamma \Delta t \ddot U_{t+\Delta t}^{i+1}</math> | <math>d \dot U_{t+\Delta t}^{i+1} = \gamma \Delta t \ddot U_{t+\Delta t}^{i+1}</math> | ||
The linearization of the momentum equation using the displacements as the unknowns leads to the following | |||
<math> K_{t+\Delta t}^{*i} d U_{t+\Delta t}^{i+1} = F_{t+\Delta t}^i</math> | <math> K_{t+\Delta t}^{*i} d U_{t+\Delta t}^{i+1} = F_{t+\Delta t}^i</math> | ||
Line 87: | Line 87: | ||
3) Updating | 3) Updating | ||
<math>U_{t+\Delta t}^{i+1} = U_{t+\Delta t}^{i+1} + dU_{t+\Delta t}^{i+1}</math> | <math>U_{t+\Delta t}^{i+1} = U_{t+\Delta t}^{i+1} + dU_{t+\Delta t}^{i+1}</math> |
Revision as of 22:42, 19 January 2010
This command is used to construct a Newmark integrator object.
integrator Newmark $gamma $beta |
$gamma | <math>\gamma</math> factor |
$beta | <math>\beta</math> factor |
EXAMPLE:
integrator Newmark 0.5 0.25
NOTES:
- If the accelerations are chosen as the unknowns and <math>\beta</math> is chosen as 0, the formulation results in the fast but conditionally stable explicit Central Difference method. Otherwise the method is implicit and requires an iterative solution process.
- Two common sets of choices are
- Average Acceleration Method (<math>\gamma=\tfrac{1}{2}, \beta = \tfrac{1}{4}</math>)
- Constant Acceleration Method (<math>\gamma=\tfrac{1}{2}, \beta = \tfrac{1}{6}</math>)
REFERENCES
Newmark, N.M. "A Method of Computation for Structural Dynamics" ASCE Journal of Engineering Mechanics Division, Vol 85. No EM3, 1959.
THEORY:
The Newmark method is a one step method implicit for solving the transient problem.
<math> M \ddot U_{t + \Delta t} + C \dot U_{t + \Delta t} + R_{t + \Delta t} = F_{t + \Delta t} </math>
Using the Taylor series approximation of <math>U_{t+\Delta t}</math> and <math>\dot U_{t+\Delta t}</math>:
<math> U_{t+\Delta t} = U_t + \Delta t \dot U_t + \tfrac{\Delta t^2}{2} \ddot U_t + \tfrac{\Delta t^3}{6} \dot \ddot U_t + \cdots </math>
<math> \dot U_{t+\Delta t} = \dot U_t + \Delta t \ddot U_t + \tfrac{\Delta t^2}{2} \dot \ddot U_t + \cdots </math>
Newton truncated these using the following:
<math> U_{t+\Delta t} = u_t + \Delta t \dot U_t + \tfrac{\Delta t^2}{2} \ddot U + \beta {\Delta t^3} \dot \ddot U </math>
<math> \dot U_{t + \Delta t} = \dot U_t + \Delta t \ddot U_t + \gamma \Delta t^2 \dot \ddot U </math>
in which he assumed linear acceleration within a time step, i.e.
<math> \dot \ddot U = \frac{{\ddot U_{t+\Delta t}} - \ddot U_t}{\Delta t} </math>
which results in the following expressions:
<math> U_{t+\Delta t} = U_t + \Delta t \dot U_t + [(0.5 - \beta) \Delta t^2] \ddot U_t + [\beta \Delta t^2] \ddot U_{t+\Delta t}</math>
<math> \dot U_{t+\Delta t} = \dot U_t + [(1-\gamma)\Delta t] \ddot U_t + [\gamma \Delta t ] \ddot U_{t+\Delta t} </math>
The variables <math>\beta</math> and <math>\gamma</math> are numerical parameters that control both the stability of the method and the amount of numerical damping introduced into the system by the method. For <math>\gamma=\tfrac{1}{2}</math> there is no numerical damping; for <math>\gamma>=\tfrac{1}{2}</math> numerical damping is introduced. Two well known and commonly used cases are:
- Average Acceleration Method (<math>\gamma=\tfrac{1}{2}, \beta = \tfrac{1}{4}</math>)
- Constant Acceleration Method (<math>\gamma=\tfrac{1}{2}, \beta = \tfrac{1}{6}</math>)
The advancement of the nonlinear solution from one step to the next requires setting initial conditions at the first trial step<math> U_{t+\Delta t}^0, \dot U_{t+\Delta t}^0, \ddot U_{t+\Delta t}^0</math> linearization of the equation, and solution of the linearized equations and updating. When the displacements are the unknowns this results in the following:
1) Initial Conditions at a time step: For an implicit solution we choose <math>U_{t+\Delta t}^0=U_t</math>. The values for the velocity and accelerations are determined using the Newmark formulas.
2) Linearizing the Newmark formulas
<math>dU_{t+\Delta t}^{i+1} = \beta \Delta t^2 d \ddot U_{t+\Delta t}^{i+1}</math>
<math>d \dot U_{t+\Delta t}^{i+1} = \gamma \Delta t \ddot U_{t+\Delta t}^{i+1}</math>
The linearization of the momentum equation using the displacements as the unknowns leads to the following
<math> K_{t+\Delta t}^{*i} d U_{t+\Delta t}^{i+1} = F_{t+\Delta t}^i</math>
<math>K_{t+\Delta t}^{*i} = K_t + \frac{\gamma}{\beta \Delta t^2} C_t + \frac{1}{\beta \Delta t^2} M</math>
3) Updating
<math>U_{t+\Delta t}^{i+1} = U_{t+\Delta t}^{i+1} + dU_{t+\Delta t}^{i+1}</math>
<math>\dot U_{t+\Delta t}^{i+1} = \dot U_{t+\Delta t}^{i+1} + \frac{\gamma}{\beta \Delta t}dU_{t+\Delta t}^{i+1}</math>
<math>\ddot U_{t+\Delta t}^{i+1} = \ddot U_{t+\Delta t}^{i+1} + \frac{1}{\beta \Delta t^2}dU_{t+\Delta t}^{i+1}</math>
Code Developed by: fmk