J2 Plasticity Material: Difference between revisions
(New page: This command is used to construct a J2 material object. {| | style="background:yellow; color:black; width:800px" | '''nDmaterial J2Plasticity $matTag $K $G $sig0 $sigInf $delta $H''' |} ...) |
No edit summary |
||
Line 1: | Line 1: | ||
This command is used to construct a J2 | This command is used to construct an multi dimensional material object that has a von Mises (J2) yield criterium and isotropic hardening. | ||
{| | {| | ||
Line 24: | Line 24: | ||
The material formulations for the J2 object are "ThreeDimensional," "PlaneStrain," "Plane Stress," "AxiSymmetric," and "PlateFiber." | The material formulations for the J2 object are "ThreeDimensional," "PlaneStrain," "Plane Stress," "AxiSymmetric," and "PlateFiber." | ||
---- | |||
THEORY: | |||
The theory for the non hardening case can be found [[http://en.wikipedia.org/wiki/Von_Mises_yield_criterion]] | |||
J2 isotropic hardening material class | |||
Elastic Model | |||
<math> \sigma = K*trace(\epsilon_e) + (2*G)*dev(\epsilon_e)</math> | |||
Yield Function | |||
<math> \phi(\sigma,q) = || dev(\sigma) || - \sqrt(\tfrac{2}{3}*q(xi)</math> | |||
Saturation Isotropic Hardening with linear term | |||
<math> q(xi) = \sigma_0 + (\sigma_\inf - \sigma_0)*exp(-delta*\xi) + H*\xi </math> | |||
Flow Rules | |||
<math> \dot {\epsilon_p} = \gamma * \frac{\partial \phi}{\partial \sigma} </math> | |||
<math> \dot \xi = -\gamma * \frac{\partial \phi}{\partial q} </math> | |||
Linear Viscosity | |||
<math>\gamma = \frac{\phi}{\eta} </math> ( if <math> \phi > 0</math> ) | |||
Backward Euler Integration Routine | |||
Yield condition enforced at time n+1 | |||
set <math> \eta = 0 </math> for rate independent case | |||
---- | ---- | ||
Code Developed by: <span style="color:blue"> Ed Love </span> | Code Developed by: <span style="color:blue"> Ed Love </span> |
Revision as of 01:24, 28 January 2010
This command is used to construct an multi dimensional material object that has a von Mises (J2) yield criterium and isotropic hardening.
nDmaterial J2Plasticity $matTag $K $G $sig0 $sigInf $delta $H |
$matTag | integer tag identifying material |
$E | elastic Modulus |
$G | shear Modulus |
$sig0 | initial yield stress |
$sigInf | final saturation yield stress |
$delta | exponential hardening parameter |
$H | linear hardening parameter |
The material formulations for the J2 object are "ThreeDimensional," "PlaneStrain," "Plane Stress," "AxiSymmetric," and "PlateFiber."
THEORY:
The theory for the non hardening case can be found [[1]]
J2 isotropic hardening material class
Elastic Model
<math> \sigma = K*trace(\epsilon_e) + (2*G)*dev(\epsilon_e)</math>
Yield Function
<math> \phi(\sigma,q) = || dev(\sigma) || - \sqrt(\tfrac{2}{3}*q(xi)</math>
Saturation Isotropic Hardening with linear term
<math> q(xi) = \sigma_0 + (\sigma_\inf - \sigma_0)*exp(-delta*\xi) + H*\xi </math>
Flow Rules
<math> \dot {\epsilon_p} = \gamma * \frac{\partial \phi}{\partial \sigma} </math>
<math> \dot \xi = -\gamma * \frac{\partial \phi}{\partial q} </math>
Linear Viscosity
<math>\gamma = \frac{\phi}{\eta} </math> ( if <math> \phi > 0</math> )
Backward Euler Integration Routine Yield condition enforced at time n+1
set <math> \eta = 0 </math> for rate independent case
Code Developed by: Ed Love