Note: Appendix D in the following text corresponds to Appendix D in Kadysiewski and Mosalam, PEER Report, 2009

Set the units

$$sec := 1$$

$$\mathbf{m} := \left(\frac{1}{0.0254} \cdot \mathbf{in}\right)$$

$$N := \left(\frac{1}{1000}\right) \cdot kN$$

$$mm := 0.001 \cdot m$$

foot :=
$$0.3048 \cdot m$$

$$MPa := 1000 \cdot \frac{kN}{m^2}$$

$$psi := \frac{MPa}{145.037738}$$

$$g := 9.81 \cdot \frac{m}{\sec^2}$$

Calculation of Infill Properties

fme := 1.00 ksi Masonry expected compressive strength

tinf := 6.00·in Thickness of masonry infill wall

hinf := 140.0 in Height of masonry infill wall

Linf := 120.0·in Length of masonry infill wall

hcol := 140·in Floor-to-floor height

Lcol := 120.0 in Centerline distance between columns

FEMA 356 formula for masonry elastic modulus

(expected and lower bound, unit: psi, Tables 7-1 and 7-2

You can input Em seperately as well

Em.:= 500·ksi

Efe := 3122·ksi Expected elastic modulus of frame concrete

 $Ig := 8856 \cdot in^4$ Gross moment of inertia of the concrete columns

 $Icol := 0.5 \cdot Ig$ Effective cracked moment of inertia of the concrete columns

 $Icol = 4.428 \times 10^3$

 $rinf := \sqrt{hinf^2 + Linf^2}$ Diagonal length of the infill

rinf = 184.391

 $\theta \inf := atan \left(\frac{hinf}{Linf} \right)$ Angle of the diagonal for the infill

 θ inf = 0.862

 $Ldiag := \sqrt{hcol^2 + Lcol^2}$ Diagonal length between column centerlines and floor centerlines

Ldiag = 184.391

 θ diag := atan $\left(\frac{\text{hcol}}{\text{Lcol}}\right)$ Angle of the diagonal between beam-column workpoints

 θ diag = 0.862

 $\Gamma := 1.2732$ PEER 2008/102, D-5

Calculate the axial stiffness of the infill strut:

Calculate the width of the compresiion strut which represents the infill, based on the method given in FEMA 356, Section 7.5.2

$$\lambda 1 := \left(\frac{\text{Em} \cdot \text{tinf} \cdot \sin(2 \cdot \theta \text{inf})}{4 \cdot \text{Efe} \cdot \text{Icol} \cdot \text{hinf}}\right)^{\frac{1}{4}}$$

$$\lambda 1 = 0.025$$

$$a := 0.175 \cdot (\lambda 1 \cdot hcol)^{-0.4} \cdot rinf$$

$$a = 19.589$$

$$kinf := \frac{a \cdot tinf \cdot Em}{rinf}$$

$$kinf = 318.708$$

Calculate the required area of the equivalent element, which will span between workpoints and will have an elastic modulus equal to Em

$$Aelem := \frac{kinf \cdot Ldiag}{Em}$$

Aelem = 117.534

Calculate the axial strength of the infill strut (Based on FEMA356, Section 7.5.2.2)

Pce := 41.4 kip Expected gravity compressive force applied to infill panel

vte := 900·psi Average bed joint strength

 $An := tinf \cdot Linf$ Net bedded area of the infill

$$An = 720$$

$$vme := \frac{0.75 \cdot \left(vte + \frac{Pce}{An}\right)}{1.5}$$
 Expected masonry shear strength

vme = 0.479

fvie := $0.05 \cdot \text{ksi}$

vshear := min(vme, fvie)

vshear = 0.05

Oce := vshear·An Expected horizontal shear capacity of infill

$$Qce = 36$$

$$Pn0 := \frac{Qce}{cos(\theta diag)}$$

Axial capacity of the equivalent compression strut

$$Pn0 = 55.317$$

Calculate the in-plane displacement properties of the infill strut:

Calculate the "yield point", i.e., the axial deformation in the equivalent strut at the point where the initial tangent stiffness line intersects the element capacity:

$$\delta Ay0 := \frac{Pn0}{kinf}$$

assumes no OOP load

$$\delta$$
Ay0 = 0.174

Calculate the IP horizontal deflection of the panel at the yield point:

$$uHy0 := \frac{\delta Ay0}{\cos(\theta diag)}$$

uHy0 = 0.267

Note: assumes that the vertical deflections of the endpoints are zero

Calculate the lateral deflection of the panel at the collpase prevention (CP) limit state: Based on FEMA 356, Section 7.5.3.2.4, including Table 7-9:

1) Estimate 0.7< β < 1.3, where β is defined as Vfre/Vine, the ratio of frame to infill expected strengths

2)
$$\frac{\text{Linf}}{\text{hinf}} = 0.857$$

3)
$$table 79 := \begin{pmatrix} 0.5 & 1\% \\ 1 & 0.8\% \\ 2 & 0.6\% \end{pmatrix}$$

Interpolated in Table 7-9. It is assumed that the CP limit state is reached when the element drift reaches point "d" as shown in Figure 7.1 of FEMA356

$$d := linterp \left(table 79^{\left< 1 \right>}, table 79^{\left< 2 \right>}, \frac{Linf}{hinf} \right)$$

$$d = 0.00857$$

 $uHcp0 := d \cdot hinf$

Displacement of the panel at the limit state

$$uHcp0 = 1.2$$

$$\mu H0 := \frac{u H c p 0}{u H y 0} \qquad \text{Implied } c$$

Implied ductility at the collapse prevention level

$$\mu H0 = 4.499$$

Calculate the Out-of-Plane (OOP) parameters of the infill:

$$\gamma \inf := 15 \cdot \frac{kN}{m}$$

Weight density of the infill bricks (assumed).

Calculate the OOP frequency of the infill, assuming that it spans vertically, with simply-supported ends:

$$Iinf_g := \frac{Linf \cdot tinf^3}{12}$$

Moment of inertia of the uncracked infill (gross moment)

$$Iinf := \frac{1}{2} \cdot Iinf_g$$

Estimated moment of inertia of the cracked infill

$$Iinf = 1.08 \times 10^3$$

winf := $Linf \cdot tinf \cdot \gamma inf$

Weight per unit of length (measured vertically) of the infill.

$$winf = 0.04$$

$$fss := \frac{\pi}{2 \cdot hinf^2} \cdot \sqrt{\frac{Em \cdot Iinf \cdot g}{winf}}$$

First natural frequency of the infill, spanning in the vertical direction, with top and bottom ends simply supported. (Blevins, 1979, Table 8-1).

$$fss = 5.802$$
 $per := \frac{1}{fss}$

per = 0.1723

Calculate the OOP effective weight:

The OOP effective weight is based on the modal effective mass of the vertically spanning, simply supported (assumed) infill wall. For simple-simple conditions, the modal effective weight is equal to 81% of the total infill weight. See Appendix D for a derivation of this value.

Winf :=
$$\gamma$$
inf · tinf · hinf · Linf

Total weight of the infill.

Winf = 5.57

 $MEW := 0.81 \cdot Winf$

Modal effective weight, assuming that the wall spans vertically, is simply supported top and

MEW = 4.512

(First mode). See Appendix D.

bottom.

This value divide by g is the OOP mass value that

should be assigned to the center node

Calculate the equivalent OOP spring which will provide the identical frequency.

$$\mathbf{k}_{\text{eq_N}} \coloneqq (2 \cdot \pi \cdot \mathrm{fss})^2 \cdot \frac{\text{MEW}}{g}$$

$$k_{\rm eq_N}=15.527$$

Calculate the moment of inertia of the equivalent beam element, such that it will provide the correct value of k_{eq N}:

$$I_{eq} \coloneqq \frac{k_{eq_N} \cdot \left(L diag^3\right)}{48 \cdot Em}$$

$$I_{eq} = 4056.03129$$

$$I_{\text{elem}} := I_{\text{ec}}$$

$$I_{\text{elem}} := I_{\text{eq}} \qquad \frac{\text{a·tinf}^3}{12} = 352.601$$

Using Equation D.28 from Appendix D:

$$1.644 \cdot \left(\frac{\text{Ldiag}}{\text{hinf}}\right)^3 \cdot \text{Iinf} = 4056.6$$
 (Same results)

Calculate the OOP Capacity of the infill:

The OOP capacity is based on FEMA 356, Section 7.5.3.2.

$$\frac{\text{hinf}}{\text{tinf}} = 23.333$$

Since this value is outside the range used in FEMA 356, Table 7-11, for determining λ , perform an extrapolation:

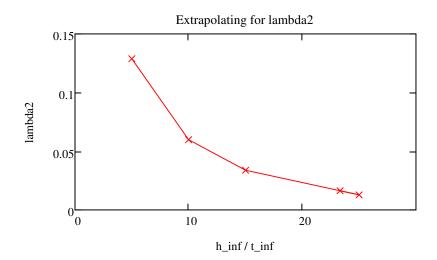
Array of values from Table 7-11:

$$FEMA_Array := \begin{pmatrix} 5 & 0.129 \\ 10 & 0.060 \\ 15 & 0.034 \\ 25 & 0.013 \end{pmatrix}$$

$$\lambda_2 := linterp \left(FEMA_Array^{\langle 1 \rangle}, FEMA_Array^{\langle 2 \rangle}, \frac{hinf}{tinf} \right)$$
 $\lambda_2 = 0.01650$

Check by graphing the values:

$$Array := \begin{pmatrix} 5 & 0.129 \\ 10 & 0.060 \\ 15 & 0.034 \\ 25 & 0.013 \\ \frac{\text{hinf}}{\text{tinf}} & \lambda_2 \end{pmatrix}$$
 $k := 1 ... \text{ rows(Array)}$



$$q_{in} := \frac{0.7 \cdot \text{fme} \cdot \lambda_2}{\frac{\text{hinf}}{\text{tinf}}}$$

Note: the expected, rather than the lower bound value, of masonry compressive strength is used here, since the expected OOP strength will be used in later calculations.

$$q_{in} = 0.000495$$
 $q_{in} = 0.495 \cdot psi$

 $q_{in} \cdot hinf \cdot Linf = 8.316 \hspace{1cm} \text{Total OOP force on the wall at capacity}.$

.....

Calculate the moment in the infill wall at the time that it reaches its capacity:

$$M_y := \frac{q_{in} \cdot Linf \cdot hinf^2}{8}$$

Assumes simple support at the top and bottom.

$$M_y = 145.53$$

Calculate the required yield moment for the equivalent element, such that the same base motion will bring it and the original wall to incipient yield:

$$M_{eq_y} \coloneqq 1.570 \cdot \frac{Ldiag}{hinf} \cdot M_y$$

Note: for derivation of this equation, see Appendix D.

$$M_{eq_y} = 300.929 \cdot in \cdot kip$$

$$Mn0 := M_{eq_y}$$

Defines the OOP "yield" moment for the equivalent member when the IP axial force is zero.

Determine the OOP point force, applied at the midspan of the equivalent element, to cause yielding:

$$F_{Ny0} := \frac{4 \cdot M_{eq_y}}{L diag}$$

$$F_{Nv0} = 6.528$$

Calculate the displacement of the equivalent element at first yield and at the collapse prevention limit state, assuming no IP axial force:

$$\mathbf{u}_{Ny0} \coloneqq \frac{\mathbf{F}_{Ny0}}{\mathbf{k}_{eq_N}}$$

OOP "yield" displacement, assuming no IP axial force.

$$u_{Ny0} = 0.42 \cdot in$$

The displacement at collapse prevention limit state:

FEMA 356, Section 7.5.3.3 gives a maximum OOP deflection based on an OOP story drift ratio of 5%.

$$u_{\hbox{Ncp0}} \coloneqq 0.05{\cdot}\hbox{hinf}$$

$$u_{\text{Ncp0}} = 7$$

This value seems too high, since it's larger than the thickness of the infill itself. Instead, define the CP displacement as equal to one half the thickness of the infill.

$$\text{MNapa} := \min \left(0.05 \cdot \text{hinf}, \frac{\text{tinf}}{2} \right)$$

$$u_{\text{Ncp0}} = 3 \cdot \text{in}$$

The implied ductility ratio is:

$$\mu_{Ncp0} \coloneqq \frac{^u Ncp0}{^u Ny0}$$

$$\mu_{Ncp0} = 7.136$$

This ductility still seems too high. Based on judgment, use a (conservative) ductility of 5:

μ<mark>λιερω</mark>:= 5

$$\underset{Ny0}{\text{where}} := u_{Ny0} \cdot \mu_{Ncp0}$$

$$u_{\text{Ncp0}} = 2.102 \cdot \text{in}$$

Calculating the axial force - moment interaction curve for specific values of P_{n0} and M_{n0} :

Using the exponent relationship:

$$f_{P_n}(M_n, P_{n0}, M_{n0}) := P_{n0} \cdot \left[1 - \left(\frac{M_n}{M_{n0}}\right)^{\frac{3}{2}}\right]^{\frac{2}{3}}$$

This is the target P-M relationship for the equivalent member, located on the diagonal between structural workpoints.

 $Pn0 = 55.317 \cdot kip$ Axial capacity of the member under pure compression (calculated above).

 $Mn0 = 300.929 \cdot in \cdot kip$ Moment capacity of the member under pure bending (calculated above).

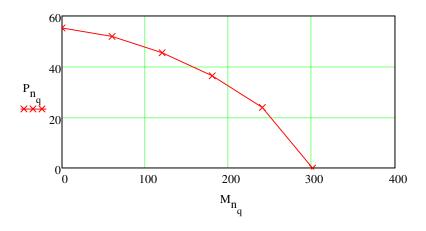
$N_{interaction} := 6$

Number of points on the interaction curve to be used for calculating fiber properties (should be an even number).

$$N_{\text{fiber}} := 2 \cdot (N_{\text{interaction}} - 1)$$
 $N_{\text{fiber}} = 10$

$$\begin{aligned} \mathbf{M}_{n} &\coloneqq & & \text{for } \mathbf{q} \in 1 ... \mathbf{N}_{interaction} \\ \mathbf{M}_{n_{q}} &\leftarrow (\mathbf{q} - 1) \cdot \frac{\mathbf{M} \mathbf{n} \mathbf{0}}{\mathbf{N}_{interaction} - 1} \\ \mathbf{M}_{n} & & & \mathbf{P}_{n} \coloneqq & & \text{for } \mathbf{q} \in 1 ... \mathbf{N}_{interaction} \\ \mathbf{P}_{n_{q}} &\leftarrow \mathbf{f}_{-} \mathbf{P}_{n} \Big(\mathbf{M}_{n_{q}}, \mathbf{P} \mathbf{n} \mathbf{0}, \mathbf{M} \mathbf{n} \mathbf{0} \Big) \\ \mathbf{P}_{n} & & & \mathbf{P}_{n} \end{aligned}$$

$$M_n^T = (0\ 60.186\ 120.371\ 180.557\ 240.743\ 300.92 P_n^T = (55.317\ 51.968\ 45.542\ 36.467\ 23.926\ 0)$$
 $q := 1..N_{interaction}$



Calculate the required strength and location of the various fibers:

$$F_{y} \coloneqq \begin{bmatrix} \text{for } p \in 1 ... N_{interaction} - 1 \\ F_{y_p} \leftarrow \frac{P_{n_p} - P_{n_{p+1}}}{2} \\ \text{for } p \in N_{interaction} ... 2 \cdot (N_{interaction} - 1) \\ F_{y_p} \leftarrow F_{y_2 \cdot N_{interaction}} - 1 - p \\ F_{y} \end{bmatrix}$$

$$F_{y} = \begin{cases} 1 \\ 1 \\ 1 ... 675 \\ 2 & 3.213 \\ 3 & 4.538 \\ 4 & 6.27 \\ 5 & 11.963 \\ 6 & 11.963 \\ 6 & 11.963 \\ 7 & 6.27 \\ 8 & 4.538 \\ 9 & 3.213 \\ 10 & 1.675 \end{cases}$$

$$\sum_{p=1}^{N_{fiber}} F_{y_p} = 55.317 \cdot \text{kip}$$

$$z := \begin{cases} \text{for } p \in 1 .. N_{interaction} - 1 \\ z_p \leftarrow \frac{M_{n_{p+1}} - M_{n_p}}{2 \cdot F_{y_p}} \\ \text{for } p \in N_{interaction} \cdot 2 \cdot \left(N_{interaction} - 1\right) \end{cases}$$

$$z = \begin{cases} z \in A_{n_{p+1}} - M_{n_p} \\ z \in A_{$$

 $abs(x) := if(x \ge 0.0, x, -x)$

Absolute function (since the MathCad absolute function has some bugs).

 $\eta := -.2$

Solve block for the determining the values of the parameters γ and η :

Estimate the values of the parameters: $\gamma := 30$

Given

$$\sum_{p=1}^{N_{fiber}} \left[\gamma \cdot \left(abs(z_p) \right)^{\eta} \right] = Aelem$$

$$\sum_{p=1}^{N_{fiber}} \left[\left[\gamma \cdot \left(abs(z_p) \right)^{\eta} \right] \cdot \left(z_p \right)^2 \right] = I_{elem}$$

Result := $Find(\gamma, \eta)$

$$\gamma = \text{Result}_1 \cdot \text{in}^2 \qquad \qquad \gamma = 102.789 \cdot \text{in}^2$$

$$\text{m} = \text{Result}_2$$
 $\eta = -1.329$

$$\text{A.:} \quad \begin{cases}
 \text{for } p \in 1..N_{\text{fiber}} \\
 A_p \leftarrow \gamma \cdot \left(abs(z_p)\right)^{\eta} \\
 A
 \end{cases}$$

$A^{T} =$		1	2	3	4	5	6	7	8
	1	2.214	5.261	8.324	12.791	30.177	30.177	12.791	

Check the results above:

$$\sum_{p=1}^{N_{fiber}} A_p = 117.534$$

$$\sum_{p=1}^{N_{fiber}} \left[A_p \cdot (z_p)^2 \right] = 4056.0313$$

Determine the stress at yield:

$$\sigma_{y} := \begin{cases} \text{for } p \in 1..N_{fiber} \\ \\ \sigma_{p} \leftarrow \frac{F_{y_{p}}}{A_{p}} \\ \\ \sigma \end{cases}$$

$\sigma_{\cdot \cdot}^{T} =$		1	2	3	4	5	6	7	8	9	10	l
- y	1	0.756	0.611	0.545	0.49	0.396	0.396	0.49	0.545	0.611	0.756	l

Calculate the strain at first yield:

$$\varepsilon_{\mathbf{y}} \coloneqq \begin{cases} \text{for } \mathbf{p} \in 1 .. N_{\text{fiber}} \\ \\ \varepsilon_{\mathbf{y}_{\mathbf{p}}} \leftarrow \frac{\sigma_{\mathbf{y}_{\mathbf{p}}}}{Em} \\ \\ \varepsilon_{\mathbf{y}} \end{cases}$$

$\varepsilon_{x}^{T} =$		1	2	3	4	5
- y	1	1.513·10 ⁻³	1.221·10-3	1.09·10-3	9.804·10-4	

Ratio :=
$$\begin{cases} \text{for } p \in 1... N_{\text{fiber}} \\ \text{Ratio}_{p} \leftarrow \frac{\varepsilon_{y_{p}}}{z_{p}} \end{cases}$$

Summary of Fiber Properties:

Elastic Modulus: Em = 500

Fiber yield strength:

		1
	1	1.675
	2	3.213
	3	4.538
	4	6.27
$F_y =$	5	11.963
	6	11.963
	7	6.27
	8	4.538
	9	3.213
	10	1.675

Fiber Area:

		1
	1	2.214145
	2	5.260806
	3	8.324044
	4	12.79111
A =	5	30.176721
	6	30.176721
	7	12.79111
	8	8.324044
	9	5.260806
	10	2.214145

Fiber location (distance from CL):

		1
	1	17.967402
	2	9.367025
	3	6.63148
	4	4.799369
z =	5	2.515478
	6	-2.515478
	7	-4.799369
	8	-6.63148
	9	-9.367025
	10	-17.967402

Fiber yield stress:

Fiber yield strain:

$$\sigma_y = \begin{bmatrix} & 1\\ 1 & 0.756\\ 2 & 0.611\\ 3 & 0.545\\ 4 & 0.49\\ 5 & 0.396\\ 6 & 0.396\\ 7 & 0.49\\ 8 & 0.545\\ 9 & 0.611\\ 10 & 0.756\\ \end{bmatrix}$$

		1
	1	1.513·10 ⁻³
	2	1.221·10 ⁻³
	3	1.09·10 ⁻³
	4	9.804·10 ⁻⁴
$\varepsilon_{y} =$	5	7.929·10 ⁻⁴
	6	7.929·10 ⁻⁴
	7	9.804·10 ⁻⁴
	8	1.09·10 ⁻³
	9	1.221·10 ⁻³
	10	1.513·10 ⁻³

Verify that the given parameters will produce the desired section properties:

$$A_{calc} := \sum_{p=1}^{N_{fiber}} A_{p}$$

$$A_{calc} = 117.534 \cdot in^{2}$$

$$\frac{A_{calc}}{Aelem} = 1.000$$

$$I_{calc} := \sum_{p=1}^{N_{fiber}} \left[A_p \cdot \left(z_p \right)^2 \right] \qquad I_{calc} = 4056.0313 \cdot in^4 \qquad \frac{I_{calc}}{I_{elem}} = 1.000$$

$$P_{0_calc} := \sum_{p=1}^{N_{fiber}} \left(A_p \cdot \sigma_{y_p} \right) \qquad P_{0_calc} = 55.317 \cdot \text{kip} \qquad \frac{P_{0_calc}}{Pn0} = 1.000$$

$$M_{0_calc} := \sum_{p=1}^{N_{fiber}} \left(\sigma_{y_p} \cdot A_p \cdot abs(z_p) \right) \qquad M_{0_calc} = 300.929 \cdot in \cdot kip \qquad \frac{M_{0_calc}}{Mn0} = 1.000$$

Calculating the IP disp - OOP disp curve for specific values of OOP disp

Using the exponent relationship:

$$f_OOP(OOP, IP0, OOP0) := IP0 \left[1 - \left(\frac{OOP}{OOP0} \right)^{\frac{3}{2}} \right]^{\frac{3}{3}}$$

This is the target P-M relationship for the equivalent member, located on the diagonal between structural workpoints.

 $Pn0 = 55.317 \cdot kip$ Axial capacity of the member under pure compression

(calculated above).

 $Mn0 = 300.929 \cdot in \cdot kip$ Moment capacity of the member under pure bending (calculated

above).

Ninteraction:= 10

Number of points on the interaction curve to be used for calculating fiber properties (should be an even number).

$$\begin{aligned} \text{OOPv} \coloneqq & & \text{for } q \in 1..N_{interaction} \\ & & \text{OOPv}_q \leftarrow (q-1) \cdot \frac{u_{Ncp0}}{N_{interaction}-1} \\ & & \text{OOPv} \end{aligned}$$

$$\begin{split} \text{IIPv} \coloneqq & \left[\begin{array}{l} \text{for} \ \ q \in \ 1 \dots N_{interaction} \\ \\ \text{IIPv}_q \leftarrow f_\text{OOP} \Big(\text{OOPv}_q, \text{uHcp0}, \text{u}_{Ncp0} \Big) \\ \\ \text{IIPv} \end{array} \right] \end{split}$$

$OOPv^{T} =$		1	2	3	4	5	6	7	8	9	10
	1	0	0.234	0.467	0.701	0.934	1.168	1.401	1.635	1.869	2.102

$IIPv^{T} =$		1	2	3	4	5	6	7	8	9	10
'	1	1.2	1.17	1.115	1.041	0.949	0.84	0.711	0.554	0.357	0

 $q := 1..N_{interaction}$

