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Abstract: Experimental research and post-earthquake reconnaissance have demonstrated that reinforced concrete col-
umns with light or widely spaced transverse reinforcement are vulnerable to shear failure, and in turn, axial failure dur-
ing earthquakes. Based on experimental data, failure surfaces have been used to define the onset of shear and axial
failure for such columns. After the response of the column intersects the failure surface, the shear or axial strength of
the column begins to degrade. This paper introduces a uniaxial material model that incorporates the failure surfaces
and the subsequent strength degradation. When used in series with a beam-column element, the uniaxial material model
can adequately capture the response of reinforced concrete columns during shear and axial load failure. The perfor-
mance of the analytical model is compared with results from shake table tests.

Key words: shear failure, axial failure, beam-column elements, failure surface, earthquakes, reinforced concrete, col-
umns, collapse, structural analysis.

Résumé : La recherche expérimentale et la reconnaissance post-séisme ont démontré que les poteaux en béton armé
avec une armature transversale légère ou largement espacée sont vulnérables à la rupture par cisaillement et, par après,
à la rupture axiale durant les séismes. En s'appuyant sur les données expérimentales, nous avons utilisé les surfaces de
rupture pour définir le début de la rupture par cisaillement et axiale pour de tels poteaux. Une fois que la réaction du
poteau recoupe la surface de rupture, la résistance au cisaillement ou axiale du poteau commence à se dégrader. Cet ar-
ticle présente un modèle matériel uniaxial qui incorpore les surfaces de rupture et la dégradation subséquente de la ré-
sistance. Lorsqu’il est utilisé en série avec un assemblage poteau-poutre, le modèle matériel uniaxial peut capter
adéquatement la réponse des poteaux en béton armé durant la rupture par cisaillement et axiale. Le rendement du mo-
dèle analytique est comparé aux résultats des essais sur table de vibration.

Mots clés : rupture en cisaillement, rupture axiale, assemblages poteau-poutre, surface de rupture, séismes, béton armé,
colonnes, effondrement, calcul des structures.
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Introduction

Analytical models capable of representing the different
failure modes of structural components are required to eval-
uate the response of a structure as it approaches the collapse
limit state. For the evaluation of existing reinforced concrete
buildings subjected to earthquake ground motion, there ex-
ists a need for analytical models incorporating the initiation
of column shear and axial load failures, in addition to the
subsequent strength degradation. Given such a model, an en-
gineer could evaluate the influence of column shear and ax-
ial load failures on the response of the building frame
system. This paper will describe how drift capacity models
for shear and axial load failure can be incorporated in an an-

alytical model to detect and initiate strength degradation of
column elements.

Several capacity models, or limit state surfaces, have been
developed to define the onset of shear failure for reinforced
concrete columns. One such model introduced by Elwood
and Moehle (2005) relates the shear demand to the drift at
shear failure based on the transverse reinforcement and axial
load ratios. Based on 50 laboratory tests on reinforced con-
crete columns yielding in flexure prior to shear failure, the
model defines the drift at shear failure as the drift at which
the shear capacity has degraded to 80% of the maximum
measured shear. As shown in Fig. 1, the point of shear fail-
ure, according to the model, is determined by the intersec-
tion of an idealized bilinear load–deformation curve for the
column and the limit surface defined by the drift capacity
model. While it is known that the shear strength will degrade
after failure, the shape of the load–deformation curve after
intersection with the limit surface is not well understood.
Analytical models allowing for a user-defined degrading
slope after failure will enable the investigation of the influ-
ence of the rate of shear strength degradation on the behav-
iour of the structural system.

Experimental research has shown that axial failure of a
shear-damaged column due to sliding along inclined shear
cracks is related to several variables including the axial stress
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on the column, the amount of transverse reinforcement, and
the drift demand. Based on these observations, the onset of
axial failure has been described using a shear-friction model
(Elwood and Moehle 2003). Similar to the shear failure
model described above, this capacity model defines a limit
surface at which axial failure is expected to occur, as shown
in Fig. 2. According to this model, columns with a low axial
load or drift demand would not be expected to experience
axial failure. As with the shear failure model, column behav-
iour after the onset of axial failure is not well understood;
however, it is reasonable to expect the axial load – horizontal
deflection relation for the damaged column will remain on
or below the limit surface after failure is detected.

While describing different phenomenon, the shear and ax-
ial capacity models described above both take on the same
general form. Both models define a limit surface and trigger
a change in the hysteretic behaviour once the appropriate
load–deformation relation for the column intersects the limit
surface. This similarity allows both capacity models to be
implemented in one general material model for structural
analysis. Capacity models are frequently used to determine
if components have experienced failure by comparing the
predicted capacities with demands estimated from an analyt-
ical model. Currently this can only be done through post-
processing of the results. By implementing this general
material model in a finite-element analysis platform, it is
possible to capture both the point at which failure is initiated
and the response of the column after shear and axial load
failure during the analysis of the structure. Such a model en-
ables the analysis of structural systems with multiple col-
umns vulnerable to shear and axial load failure as the
structural system approaches the collapse limit state.

This paper will describe the general material model pro-
posed above as implemented in the Open System for Earth-
quake Engineering Simulation (OpenSees), a finite-element
analysis platform designed for earthquake engineering simu-
lation (McKenna et al. 2004). First, the concept of material
models, as they are applied in OpenSees, will be introduced.
Then, in an effort to improve on available shear-critical col-
umn models, the new material model described above will
be developed. The application of the material model to shear
and axial load failure of reinforced concrete columns will be
discussed. Finally, the response of the analytical models will
be compared with results from shake table tests by Elwood
and Moehle (2003).

Uniaxial material models

Uniaxial material models define a constitutive relation-
ship. Depending on the application, the material model
could define a relation between stress and strain, force and
displacement, moment and curvature, moment and rotation,
etc. Uniaxial material models are the lowest level of objects
that compose elements in OpenSees. One-dimensional ele-
ments, such as springs and truss members, require only one
uniaxial material model to define their response. For the
zero-length spring element used in this study, the uniaxial
material model defines the force–displacement relationship
directly.

The uniaxial material model developed in this paper is
based on the hysteretic uniaxial material model available in
OpenSees. The hysteretic material model has a predefined
trilinear backbone and five parameters to define the hysteretic
behaviour, including pinching and stiffness degradation. The
backbone can include strength degradation, a necessary fea-
ture for modelling the behaviour of shear-critical columns. A
more detailed description of the hysteretic material model can
be found in McKenna et al. (2004).

A shear-critical column model

To motivate the development of a new uniaxial material
model, the example of a shear spring in series with a beam-
column element, as shown in Fig. 3, is considered for
modelling the shear strength degradation of shear-critical
columns. The hysteretic uniaxial material model, with
strength degradation, can be used to define the constitutive
relationship for the shear spring. Any beam-column element
capable of modelling the flexural deformations can be used.
For the following discussion it will be assumed that the flex-
ural deformations modelled by the beam-column element
include both the deformations due to curvatures over the col-
umn height and those due to concentrated rotations at the
column ends resulting from anchorage bar slip. It should be
recognized that the series model shown in Fig. 3 simulates
the shear response in an average sense over the height of the
column. Intended for the global analysis of a building frame
system, this model does not attempt to account for localized
deformations over the height of the column.

Similar models have been proposed previously for model-
ling the post-peak behaviour of existing reinforced concrete
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Fig. 1. Shear failure model. Fig. 2. Axial failure model.



columns (Pincheira et al. 1999; Shirai et al. 2001). In such a
model, all the flexural deformations are concentrated in the
beam-column element and the shear deformations are mod-
elled by the shear spring. If the shear strength (that is, the
peak in the shear spring response backbone) is less than the
flexural yield strength of the column (that is, shear corre-
sponding to the development of plastic hinges at the column
ends), then the model will be able to capture the degrading
shear behaviour, as shown by the solid line for the total re-
sponse of the column in Fig. 3d. If, however, the shear
strength is estimated to be higher than the flexural yield
strength of the column, then, given limited strain hardening
in the flexural response, the model will not capture any
shear degradation, as shown by the broken line for the total
response of the column in Fig. 3d. Several studies have
shown, however, that the shear strength decays with in-
creased inelastic deformation (Watanabe and Ichinose 1992;
Aschheim and Moehle 1992; Priestley et al. 1994; Sezen
2002). Hence, the total response behaviour depicted by the
broken curve in Fig. 3d is not realistic for columns that yield
in flexure close to their estimated shear strength. The point
of shear failure (that is, the start of the degrading behaviour
in the total response backbone) should be determined by
considering both force and deformation. The model in
Fig. 3a determines the point of shear failure based only on
the column shear.

The behaviour of the series model can be improved by us-
ing a uniaxial material model for the shear spring that will
only degrade after shear failure has been detected. The de-
tection of shear failure should be based on both the column
shear and the total deformation of the column. Calculation
of the total deformation requires a coupling of the shear
spring and beam-column element. This can be achieved by a
new uniaxial material model, entitled limit state material,
that traces the behaviour of the beam-column element and
changes the backbone of the material model to include
strength degradation once the response of the beam-column
element exceeds a predefined limit state surface as described
in the next section.

Limit state uniaxial material model

The limit state uniaxial material model was developed
based on the existing hysteretic material model in OpenSees.

The limit state surface used by the uniaxial material model
is referred to as a “limit curve” because it is defined in only
two dimensions. The choice of these two dimensions, or the
ordinate and abscissa on which the limit curve is defined,
depends on the application. Three limit curves have been
implemented in OpenSees: one to define shear failure
(Fig. 1), another to define axial failure (Fig. 2), and a
trilinear general purpose limit curve that can be used to ap-
proximate any capacity model defining the failure criteria
for an element. As shown in Figs. l and 2, the shear force is
used for the ordinate of the shear failure limit curve and the
axial force is used for the ordinate of the axial failure limit
curve. The abscissa is assumed to be a deformation measure,
such as interstory drift. Further details on how the limit state
material model was implemented in OpenSees can be found
elsewhere (Elwood and Moehle 2003).

Prior to failure, the limit state material model follows the
same hysteretic rules as defined for the hysteretic material
model. The corner points for the pre-failure backbone can be
defined such that the response of the uniaxial material model
remains linear or is allowed to yield. After each converged
step the uniaxial material model queries the beam-column
element for its force and deformation and then checks to see
if the response has exceeded the selected limit curve. If the
limit curve has not been exceeded, then the analysis contin-
ues to the next step without any change to the backbone. If
the limit curve has been exceeded, then the backbone is re-
defined to include the degrading slope, Kdeg, and residual
strength, Fres. Figure 4 illustrates how the backbone for the
force–deformation relation of the limit state material model
is redefined upon failure. Exceedance of the limit curve is
checked only after each converged load step to avoid “flip-
flopping” between the pre- and post-failure states within a
single load step. Consequently, small load steps (or time
steps for dynamic analysis) are required to accurately deter-
mine when the limit curve is exceeded.

Applications of limit state material model

Two examples of how the limit state material model can
be used will be presented in the following sections. The first
example demonstrates how the uniaxial material model can
be used to model column shear failures, while the second
demonstrates its application to column axial failures. When
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Fig. 3. Shear spring in series model using hysteretic material model.



used to model axial failure, the limit state material model in-
corporates coupling between shear and axial load after fail-
ure is detected.

In addition to the examples presented here, the limit state
material model can be used to model any failure mode that
triggers a sudden change in behaviour for a component. Kang
and Wallace (2004) have used the limit state material model
to capture the punching shear failure of flat plate slabs. Other
examples include the shear failure of reinforced concrete
beams, the fracture of welded steel moment connections, and
the sliding shear failure of masonry walls. Each failure mode
must be defined by a limit curve (capacity model) and the
backbone response after failure is detected must be reason-
ably approximated by a linear degradation in strength, down
to a preselected residual value.

Modelling column shear failures
In this example the limit state material model is used to

define the force–deformation relationship of a shear spring
in series with a beam-column element. The uniaxial material
model monitors the response of the beam-column element to
detect the onset of shear failure. As shown in Fig. 5, the
limit curve is defined based on the column shear, V, and the
total displacement, ∆ (or the interstory drift, ∆/L). If the col-
umn is vulnerable to shear failure after flexural yielding,
then the drift capacity model proposed by Elwood and
Moehle (2005) can be used to define the limit curve
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where ∆ s/L is the drift ratio at shear failure, ρ′ ′ is the trans-
verse reinforcement ratio, ν is the nominal shear stress (in
megapascals), fc′ is the concrete compressive strength (in
megapascals), P is the axial load on the column, and Ag is
the gross cross-sectional area.

A similar model for shear-critical bridge columns was de-
veloped by Ricles et al. (1998) by incorporating the shear
strength model by Priestley et al. (1994) to initiate shear
failure. However, as shown in Elwood and Moehle (2005),
the use of a shear strength model to predict the point at
which shear failure occurs can result in an unacceptably
large variability in the predicted drift at shear failure for
shear-critical building columns.

The pre-failure backbone for the limit state material
model is selected as linear with a steep slope equal to the

shear stiffness of an uncracked column. Note that by defin-
ing the limit curve based on the total displacement, the shear
deformations are included in the displacements monitored
by the uniaxial material model, and shear failure is based on
the sum of the flexure and shear deformations.

When the beam-column response reaches the limit curve
for the first time, the backbone of the shear spring is rede-
fined, as shown in Fig. 4, to include the degrading slope,
Kdeg, and residual strength, Fres. Since shear failure will in-
fluence the strength of the column in both directions, the
backbone is redefined for cycles in either direction, regard-
less of the direction of failure. Note that for the current im-
plementation of the limit state material model, the backbone
after failure is assumed to be symmetric about the origin.
This assumption is valid for columns with approximately
equal flexural strengths in positive and negative bending. For
columns with different flexural strengths in positive and neg-
ative bending, the backbone should be redefined such that
the peak shear strength in each direction does not exceed the
flexural strength in the respective direction; however, the
current implementation will still be appropriate for most
ground motions owing to the concentration of damage that
frequently occurs in the direction of initial shear failure.

After failure is detected, the response follows the gray
hysteretic curves shown in Fig. 5. Additional lateral de-
mands will result in strength degradation of the shear spring
and an increase in the shear deformations, accompanied by
unloading of the beam-column element, and therefore, a
slight reduction in the flexural deformations. Experimental
results suggest that the shear deformations increase signifi-
cantly after shear failure but do not conclusively show
whether the flexural deformations increase or decrease
(Sezen 2002).

Experimental studies have shown that axial failure tends
to occur when the shear strength degrades to approximately
zero (Nakamura and Yoshimura 2002). Hence, Kdeg can be
estimated using the calculated drift at axial failure as illus-
trated in Fig. 6. When shear failure is detected, based on the
intersection of the total response and the shear limit curve,
the degrading slope for the total response, K deg

t , can be esti-
mated as follows:
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where Vu is the ultimate shear capacity of the column, ∆ s is
the calculated displacement at shear failure, and ∆a is the
calculated displacement at axial failure for the axial load at
the time of shear failure, Ps. (Note that since the column ax-
ial load can change during the analysis, ∆s is not necessarily
equal to the displacement at which axial failure is eventually
detected.) Since the shear spring and beam-column element
are in series, the total flexibility is equal to the sum of the
flexibilities of the shear spring and the beam-column ele-
ment. Hence, Kdeg can be determined as follows:
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Note that Kunload must be provided as an input parameter
for the limit state material model. To investigate the influ-
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Fig. 4. Redefinition of backbone after failure is detected.



ence of different rates of shear strength degradation on the
behaviour of the structural system, the material model also
allows the analyst the option of specifying Kdeg directly prior
to running the analysis.

If the shear spring unloads and reloads before reaching
Fres, as shown in Fig. 5, then a weakness of the series model
becomes apparent. When the shear strength begins degrading
again after reloading, the flexural displacements will be less
than they were when unloading of the shear spring began (as
noted by displacement e in Fig. 5). This discrepancy will re-
sult in the peak of the total response hysteresis occurring at
a displacement e from the point where unloading began. Ex-
perimental results suggest that the peak should occur at a
displacement close to where the unloading began. The mag-
nitude of the offset e is dependent on the pinching character-
istics modelled by the beam-column element. Considering
other approximations used in the series model (for example,
a linear degrading response), the offset e does not signifi-
cantly detract from the effectiveness of the relatively simple
series model.

The beam-column element response must have a positive
slope when shear failure is detected; without a positive slope

there is not a unique solution for an increase in the total dis-
placement. Figure 7 illustrates the response of the column
model for monotonically increasing total displacements. In
Case 1, the beam-column response has a positive slope at
shear failure, while for Case 2, a negative slope at shear fail-
ure is considered. The softening force-displacement relation
for the shear spring requires that an increase in the total dis-
placement after shear failure be accompanied by a decrease
in the applied shear. For Case 1, the beam-column is forced
unload to achieve the required reduction in shear. The reduc-
tion in ∆ f requires an increase in ∆s to achieve the desired
increase in the total displacement; hence, only one solution
is possible. In contrast, for Case 2, the beam-column ele-
ment can either unload or continue softening to achieve the
required reduction in shear. This leads to three possible solu-
tions for an increase in the total displacements: the shear
spring can soften while the beam-column unloads (b + A),
the shear spring can unload while the beam-column softens
(a + B), or both the shear spring and the beam-column can
soften (b + B). While all three solutions satisfy equilibrium,
only the (b + A) solution exhibits the expected localization
of damage in the shear spring. Crisfield and Wills (1988)
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Fig. 5. Shear spring in series model using limit state uniaxial material model.

Fig. 6. Determination of degrading slope, Kdeg.



have shown that the equilibrium state upon which the solu-
tion will converge depends on the step size and the selected
iterative technique. To avoid numerical convergence prob-
lems and ensure a localization of damage in the shear spring,
it is recommended that the beam-column response always
maintain a positive slope.

Modelling column axial failures
The limit state uniaxial material model can also be used to

model axial failure where the limit curve is defined by an
axial capacity model for shear-damaged columns (Elwood
and Moehle 2003). The axial capacity model assumes that
shear failure has already occurred and that axial failure re-
sults from sliding along a critical inclined shear crack. The
model described here, and illustrated in Fig. 8, assumes that
shear failure is modelled by a shear spring in series, similar
to the model described above. After any analysis, postpro-
cessing should be used to confirm that shear failure was de-
tected prior to axial failure.

The axial capacity model by Elwood and Moehle (2003)
suggests that the drift at axial failure, (∆/L)axial, is inversely
proportional to the axial load supported by the column and
directly proportional to the amount of transverse reinforce-
ment

[4]
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where dc is the depth of the column core from center line to
center line of the ties, s is the spacing of the transverse rein-
forcement, Ast and fyt are the area and yield strength of the
transverse reinforcement, P is the axial load on the column,
and θ is the critical crack angle from the horizontal (as-
sumed to be 65°). As shown in Fig. 8, the axial failure limit
curve for a given column, as defined by the Elwood and
Moehle model, can be represented on a plot of axial load
versus total lateral drift.

If the beam-column element includes the axial flexibility
of the column, the pre-failure backbone for the axial spring
should be defined by a steep straight line to ensure the

spring does not add any axial flexibility to the model. If, on
the other hand, the beam-column element is considered axi-
ally rigid, then the slope of the pre-failure backbone for the
axial spring can be set equal to the initial axial stiffness of
the column. After axial failure, the backbone will be rede-
fined to include the degrading slope, Kdeg, and the residual
strength, Pres. Since the axial failure model only describes
compression failure, the backbone is redefined only for com-
pressive axial loads (shown as positive in Fig. 8).

Shear–axial coupling should be included in any model in
which the behaviour after the onset of axial failure is of in-
terest. Although very few experimental data have been col-
lected after the onset of axial failure, shake table tests by
Elwood and Moehle (2003) and large-scale pseudo-static
tests by Lynn (2001) and Sezen (2002) suggest that an in-
crease in lateral shear deformations may lead to an increase
in axial deformations and a loss of axial load. Based on this
general observation, the coupling model illustrated in Fig. 9
has been developed to approximate the shear–axial coupling
after axial failure. The response after axial failure is shown
as a gray line in Fig. 9. For any increase in lateral displace-
ment after axial failure is detected, the P–∆horz relationship
is assumed to follow the axial limit curve defined by the El-
wood and Moehle model. As the earthquake imposes lateral
deformations on the damaged column beyond the point of
axial failure, the P–∆horz relationship will result in a loss of
axial load, which will in turn lead to an increase in axial de-
formations owing to the P–∆vert relationship defined by the
post-failure backbone of the axial spring. When the P–∆horz
response is on the limit curve, the stiffness of the axial
spring is set to Kdeg to ensure the spring does not unload
elastically. When the earthquake reverses the direction of
motion of the structure, it is assumed that the critical shear
failure crack will partially close and sliding along the crack
will be arrested, resulting in temporary support of the axial
load; however, since the column has sustained significant
damage, the axial stiffness of the column can be assumed to
be less than the elastic axial stiffness. To account for this be-
haviour when the P–∆horz response leaves the axial limit
curve, the backbone of the axial spring is redefined such that
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the stiffness of the spring is equal to α times the elastic axial
stiffness of the column, Ke, temporarily stopping the decay
along the P–∆vert backbone. Sliding along the critical shear
failure plane, and hence, decay along the P–∆vert backbone,
will resume if the P–∆horz response hits the limit curve
again.

The softening factor α applied to the axial spring stiffness
was selected to approximately represent the damage to the
column core. The softening factor should be less than unity;
however, further testing beyond the point of axial failure is
required to provide further guidance on the selection of α.
Note, if the α = 1.0 is selected, numerical convergence is
frequently not achieved when the P–∆horz response moves
off the axial limit curve owing to the sudden change in stiff-
ness.

Figure 10 provides a closer look at how the material
model response is forced to follow the axial limit curve after
failure. Recall that exceedance of the limit curve is checked
only after each converged load step to avoid “flip-flopping”
between the pre- and post-failure states within a single load
step. For each converged step beyond the limit surface there
exists an unbalance force, Ploss, required to return the mate-
rial model to the limit curve at the same deformation. As
shown in Fig. 10, the axial load lost after each converged
step beyond the limit curve is the sum of Ploss and axial load
lost because of softening of the damaged column, Psoft. The
total, Ploss + Psoft, is equal to the gravity load that must be
redistributed to neighboring elements within one time step.

The differential lengthening of columns because of flex-
ural cracking will result in coupling between ∆horz and ∆vert
not shown in Fig. 9. For clarity, the response illustrated here
assumes there is no coupling except on the axial limit curve,
resulting in the horizontal and vertical lines seen on the P–
∆horz and the V–∆vert plots, respectively, and the stationary
points marked by solid circles on the P–∆vert plot.

Comparison of analytical model with
experimental results

In this section, the response of the column model, incor-
porating limit state material models for shear and axial load
failure, is compared with results from shake table tests by
Elwood and Moehle (2003). These tests were selected for
comparison because they provide data on the response of re-
inforced concrete columns after the onset of axial failure. To
the author’s knowledge, such data are unavailable elsewhere.

The shake table test specimens were composed of three
columns fixed at their base and interconnected by a beam at
the upper level (Fig. 11). The center column had wide spac-
ing of transverse reinforcement, making it vulnerable to
shear failure and subsequent axial load failure during testing.
Two nominally identical test specimens were constructed
and tested. The first specimen supported a mass of 300 kN,
producing a center column axial load of 128 kN (0.10fc′Ag).
The second specimen also supported a mass of 300 kN, but
pneumatic jacks were added to increase the axial load on the
center column to 303 kN (0.24fc′Ag). Table 1 summarizes the
critical properties of the frame specimens illustrated in
Fig. 11. Both specimens were subjected to one horizontal
component from a scaled ground motion recorded at Viña
del Mar during the 1985 Chile earthquake. Further details of
the test setup and the analyses described below can be found
in Elwood and Moehle (2003).

All three columns were modelled using nonlinear fiber
beam-column elements (Souza 2000). Linear rotational
springs were connected to each end of the beam-column ele-
ments to account for bar slip deformations. To model the
shear and axial load failures of the center column, shear and
axial springs were attached in series with the center column
element as shown in Fig. 8. Equations [1] and [4] were used
to define the limit curves for the shear and axial springs, re-
spectively. The initial slope for the shear spring (that is, the
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slope of the pre-failure backbone from Fig. 5) was chosen
based on the shear stiffness of the uncracked column. As
shown in Fig. 6, the degrading slope for the shear spring af-
ter shear failure is detected (Kdeg from Fig. 6) was deter-
mined based on achieving the calculated drift at axial failure
(per eq. [4]) once the shear strength has degraded to zero.
The initial slope for the axial spring (that is, the slope of the
pre-failure backbone from Fig. 8) was selected as 100 times
stiffer than the axial stiffness of the column to ensure no ad-
ditional axial flexibility was introduced into the model. The
degrading slope of the axial spring (Kdeg from Fig. 8) was
selected as –16 kN/mm, based on a linear approximation to

test data from Specimen 2. Further testing beyond the
initiation of axial failure is needed to provide guidance on
the selection of reasonable values for the degrading slope af-
ter axial failure. For reloading after axial failure, the soften-
ing factor α was selected to be 0.01. The beam and footings
were modelled as linear-elastic.

As discussed above, for a column using the limit state
failure model to define shear failure, computational issues
require that the flexural response always maintains a positive
slope prior to shear failure. Although the concrete for the
center column could be considered unconfined owing to the
wide spacing of the transverse reinforcement, to avoid a neg-
ative slope in the flexural response, the selected concrete
material model for the fiber beam-column element did not
allow for strength degradation after reaching the unconfined
concrete compressive strength of 24 MPa. The reinforcing
steel material model for the center column used a strain-
hardening modulus of 0.015Es (where Es = 200 000 MPa),
approximately twice that observed in the coupon tests, to en-
sure the P–Delta effects did not result in a negative slope in
the flexural response. Since strength degradation after shear
failure, modelled by the shear spring, governed the strength
degrading behaviour of the center column, the altered con-
crete and steel material models did not significantly impact
the calculated column response.

Static cyclic analyses were performed by applying the re-
corded displacement of the beam during the shake table tests
to the node at the top of the center column. Such analyses
are similar to those performed to validate analytical models
using static test data (Pincheira et al. 1999). The results
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Fig. 9. Shear–axial coupling after axial failure for the model shown in Fig. 8.

Fig. 10. Detail of axial load loss from Fig. 9.



demonstrate the capability of the analytical model to repro-
duce the hysteretic behaviour observed during the test. Dy-
namic analyses, conducted with the same model, have also
shown close agreement with the experimental data, although
the specimen drifts tend to be underestimated. Results of the
dynamic analyses can be found elsewhere (Elwood and
Moehle 2003).

Shear response
Figure 12 compares the results from the static cyclic anal-

ysis with the measured shear hysteretic response for the
center columns of both specimens. The analytical model ad-
equately represents the measured response in terms of the
initial and degraded column stiffness. Prior to shear failure,
stiffness degradation results from the hysteretic behaviour of
the concrete and steel models used to define the fiber ele-
ment sections and the flexural response of the fiber element.

After shear failure, the shear deformations modelled by the
shear spring dominate the response of the analytical model
(Fig. 13). The pinched hysteretic response of the shear
spring material model provides the additional stiffness deg-
radation observed after shear failure.

For Specimen 1, the analytical model detects that shear
strength degradation begins during a negative displacement
cycle at a drift ratio of –2.5%, while for Specimen 2, shear
strength degradation is first detected during a positive dis-
placement cycle at a drift ratio of 2.1%. This response is
consistent with the observed behaviour for both specimens.

The bottom plots in Fig. 12 indicate that the measured
shear strength degradation did not occur as rapidly as indi-
cated by the analytical results. In particular, the measured
shears for both specimens beyond a drift ratio of 4% for the
large positive displacement cycles at 25 s are as much as
twice that estimated by the analysis. Regardless of overesti-
mating the rate of shear strength degradation, the model ade-
quately represents the near-complete loss of shear strength
after 28 s for Specimen 1 and 25 s for Specimen 2.

In Fig. 13, the response of the analytical model from 15 to
17.5 s is decomposed into the shear and flexural (including
bar slip) deformation components. While the flexural defor-
mations estimated by the model are similar for the two spec-
imens, the estimated shear deformations for Specimen 2 are
considerably greater than those for Specimen 1. The larger
shear deformations result in the greater loss of shear strength
for Specimen 2 during the cycles shown in Fig. 13. The ear-
lier influence of shear deformations and loss of shear
strength for Specimen 2 is one of the fundamental differ-
ences between the observed response of the two specimens.

Axial response
Only the center column of Specimen 2 experienced axial

failure during testing, and hence the comparison of the axial
response will be limited to this component. The vertical dis-
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Fig. 11. Shake table test specimens (units in millimeters).

fc′ (columns and beam, Specimen 1) 24.5 MPa

fc′ (columns and beam, Specimen 2) 23.9 MPa

fy (center column longitudinal bars) 479 MPa

fy (outside column longitudinal bars) 424 MPa

fy (center column transverse bars) 718 MPa

Mass 300 kN
Center column axial load (Specimen 1) 128 kN
Center column axial load (Specimen 2) 303 kN
Longitudinal reinforcement ratio, ρl

(center column)
2.5%

Longitudinal reinforcement ratio, ρl

(outside columns)
2.0%

Longitudinal reinforcement ratio, ρh

(center column)
0.18%

Table 1. Properties for shake table test specimens (Elwood and
Moehle 2003).



placements and axial load response for the center column
are shown in Figs. 14 through 16. Owing to flexural crack-
ing, the center column lengthens with increasing lateral dis-

placement prior to shear failure. After shear failure, but prior
to axial failure, the influence of the lateral displacements on
the calculated vertical response diminishes as the shear de-
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Fig. 12. Center column shear hysteretic response using static cyclic analysis.
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mand on the center column drops. The analytical model does
not capture the 0.5 mm of downward vertical displacement
accompanying shear failure (at 17 s) as seen in the test data
shown in the right-hand plot of Fig. 14.

After axial failure is detected, the vertical displacements
at the center column increase rapidly in the downward direc-
tion. As shown in Fig. 15, the downward vertical displace-
ments given by the analytical model increase only while the
calculated response follows the axial limit curve. While cap-
turing some of the general characteristics of the measured
axial load-vertical displacement response for the center col-
umn (left hand plot of Fig. 15) and correctly determining the
timing of the first increase in downward vertical displace-
ments (bottom plot of Fig. 16), the analytical model under-
estimates the increase in vertical displacements, in part due
to the position of the axial limit curve. The influence of the
position of the axial limit curve is investigated in more detail
in Elwood and Moehle (2003).

Figure 15 shows that the axial load in the center column
decreases with increasing lateral displacements owing to the
difference in the vertical displacements at the center and out-
side columns and the accompanying bending of the beam.
Since the slight downward movement of the beam at shear
failure of the center column (at 17 s) is not captured by the
analytical model, the accompanying 31 kN drop in the center
column axial load is also not observed in the calculated re-
sults. Once the calculated results intersect the axial failure
limit curve, according to the shear–axial coupling model
shown in Fig. 9, the axial load in the center column is forced
to follow the limit curve until the direction of motion reverses
and the column begins to pick up load again. The analytical
results indicate a minimum axial load of 107 kN, compared
with a measured minimum axial load of 44 kN. While under-
estimating the total axial load lost, the analytical model repro-
duces many of the critical characteristics of the center column
axial load response history, as shown in Fig. 16.

Effect of variability on the limit state failure
model

The accuracy of any analysis using the limit state failure

model described in this paper is limited by the accuracy of
the capacity models used to define the limit curves and the
ability of the hysteretic rules to represent the behaviour after
failure. While further study is required to improve estimates
of the limit curves and the degrading behaviour after shear
and axial failure, significant variability in the estimates is
expected to remain because of the extent of damage ex-
pected at the point of shear and axial failure. Limited experi-
mental studies on the response of reinforced concrete
columns after shear failure, and particularly after axial fail-
ure, make reliable assessment of the variability difficult.

Owing to the significant change in the response of the
structure once a limit curve is reached, the limit state failure
model is particularly sensitive to any variability in the limit
curves. For example, if a conservative estimate of the axial
capacity limit curve is used and failure is detected in a col-
umn, then the additional gravity load redistributed to other
columns may lead to their failure and a progressive collapse
of the structure. If, on the other hand, a limit curve repre-
senting the mean axial capacity is used, then failure of the
first column may not be detected and no collapse would en-
sue. The sensitivity of the system response to the variability
of the limit curves must be accounted for directly when eval-
uating the results from any analysis using the limit state fail-
ure model.

Research by other investigators may enable the use of the
limit state failure model in a probabilistic assessment of the
structural response. Work by Gardoni et al. (2002) can be
used to construct probabilistic capacity models based on the
deterministic limit curves presented here. Work by Haukaas
(2003) will allow the probabilistic capacity models to be in-
cluded in a finite element analysis using the limit state fail-
ure model and OpenSees, resulting in the assessment of the
probability of collapse. Such probabilistic modelling is be-
yond the scope of the current study, but should be consid-
ered in future research.

Summary and conclusions

A relatively simple uniaxial material model has been de-
veloped to model the failure of reinforced concrete compo-

Fig. 14. Coupling of horizontal and vertical displacements at the Specimen 2 center column.



nents. The material model detects the point of failure based
on the response of an associated beam-column element in-
tersecting a predefined limit state failure surface. The limit
state failure surface can change shape or move during an
analysis based on the response of the element it describes
(for example, the limit state failure surface describing shear
failure of a column may be dependent on the axial load on
the column, and thus, will move as the axial load on the col-
umn changes during the analysis). After failure of the rein-
forced concrete component is detected, the strength of the
uniaxial material model degrades with increasing deforma-

tions. When the uniaxial material model is connected in se-
ries with the associated beam-column element, the strength
degradation of the material model will limit the load carried
by the beam-column element and effectively model the
strength degradation of the reinforced concrete component.

In this paper, the uniaxial material model has been applied
to the shear failure and axial failure of existing reinforced
concrete columns. This material model enables shear failure
of a reinforced concrete column to be defined in terms of
multiple variables that may change during the course of an
analysis, including, shear force, lateral drift, and axial load.
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Fig. 15. Variation of Specimen 2 center column axial load with vertical displacement and drift ratio.

Fig. 16. Axial load and vertical displacement response histories for Specimen 2 center column.



After shear failure is detected the material model can esti-
mate the rate of shear strength degradation based on an esti-
mate of the drift at axial failure. The material model can also
capture axial failure of the column, accounting for changes
in the axial load and lateral drift during the analysis. Shear–
axial coupling was incorporated in the material model to ap-
proximate the response of a column after the onset of axial
failure. The coupling model was based on very limited ex-
perimental data and, as such, may not be representative of
the behaviour of columns with different details and sub-
jected to different ground motions. More experimental data
after the onset of axial failure is required to improve the
shear–axial coupling model.

Comparison of the analytical model with shake table test
data indicated that, while simplifying the response after
shear and axial failure, the relatively simple material model
adequately captured many of the critical characteristics of
the specimen response. The analyses accurately determined
the timing of the shear and axial load failures and captured
the increase in shear deformations after shear failure and the
variation in the center column axial load after axial failure.
The total loss of axial load and the vertical shortening of the
center column were underestimated by the analyses. By in-
corporating such a column model in a building frame analy-
sis it is possible to account for the influence of shear and
axial failures of individual columns on the response of the
building system.
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