An convergence problem for aggregator

Forum for OpenSees users to post questions, comments, etc. on the use of the OpenSees interpreter, OpenSees.exe

Moderators: silvia, selimgunay, Moderators

Post Reply
rcsoul
Posts: 17
Joined: Mon Jun 13, 2005 4:27 am
Location: Integer Engineering Consultants, Ltd.

An convergence problem for aggregator

Post by rcsoul »

Hello, everyone.
Can I set zero stiffness in uniaxial material for shear section to aggregate with fiber section? I have tested this in Example 2. 2D but experiencing convergence problem. The script was posted below.

Because the uniaxial material I impelmented for shear section got zero stiffness somewhere (just like zero stiffness in epp model after yield) so I need to achieve that.

Can anyone help me? Thank you very much.






# --------------------------------------------------------------------------------------------------
# Example 2. 2D cantilever column, static pushover
# fiber section, nonlinearBeamColumn element
# Silvia Mazzoni & Frank McKenna, 2006
#
# ^Y
# |
# 2 __
# | |
# | |
# | |
# (1) LCol
# | |
# | |
# | |
# =1= _|_ -------->X
#

# SET UP ----------------------------------------------------------------------------
# units: kip, inch, sec
wipe; # clear memory of all past model definitions
file mkdir Data; # create data directory
model BasicBuilder -ndm 2 -ndf 3; # Define the model builder, ndm=#dimension, ndf=#dofs


# define GEOMETRY -------------------------------------------------------------
set LCol 432; # column length
set Weight 2000.; # superstructure weight
# define section geometry
set HCol 60; # Column Depth
set BCol 60; # Column Width

# calculated parameters
set PCol $Weight; # nodal dead-load weight per column
set g 386.4; # g.
set Mass [expr $PCol/$g]; # nodal mass
# calculated geometry parameters
set ACol [expr $BCol*$HCol]; # cross-sectional area
set IzCol [expr 1./12.*$BCol*pow($HCol,3)]; # Column moment of inertia

# nodal coordinates:
node 1 0 0; # node#, X, Y
node 2 0 $LCol

# Single point constraints -- Boundary Conditions
fix 1 1 1 1; # node DX DY RZ

# nodal masses:
mass 2 $Mass 1e-9 0.; # node#, Mx My Mz, Mass=Weight/g, neglect rotational inertia at nodes

# Define ELEMENTS & SECTIONS -------------------------------------------------------------
set ColSecTag 1; # assign a tag number to the column section
# define section geometry
set coverCol 5.; # Column cover to reinforcing steel NA.
set numBarsCol 5; # number of longitudinal-reinforcement bars in each side of column section. (symmetric top & bot)
set barAreaCol 2.25 ; # area of longitudinal-reinforcement bars


# MATERIAL parameters -------------------------------------------------------------------
set IDconcU 1; # material ID tag -- unconfined cover concrete
set IDreinf 2; # material ID tag -- reinforcement
# nominal concrete compressive strength
set fc -4.; # CONCRETE Compressive Strength (+Tension, -Compression)
set Ec [expr 57*sqrt(-$fc*1000)]; # Concrete Elastic Modulus (the term in sqr root needs to be in psi
# unconfined concrete
set fc1U $fc; # UNCONFINED concrete (todeschini parabolic model), maximum stress
set eps1U -0.003; # strain at maximum strength of unconfined concrete
set fc2U [expr 0.2*$fc1U]; # ultimate stress
set eps2U -0.01; # strain at ultimate stress
set lambda 0.1; # ratio between unloading slope at $eps2 and initial slope $Ec
# tensile-strength properties
set ftU [expr -0.14*$fc1U]; # tensile strength +tension
set Ets [expr $ftU/0.002]; # tension softening stiffness
# -----------
set Fy 66.8; # STEEL yield stress
set Es 29000.; # modulus of steel
set Bs 0.01; # strain-hardening ratio
set R0 18; # control the transition from elastic to plastic branches
set cR1 0.925; # control the transition from elastic to plastic branches
set cR2 0.15; # control the transition from elastic to plastic branches
uniaxialMaterial Concrete02 $IDconcU $fc1U $eps1U $fc2U $eps2U $lambda $ftU $Ets; # build cover concrete (unconfined)
uniaxialMaterial Steel02 $IDreinf $Fy $Es $Bs $R0 $cR1 $cR2; # build reinforcement material

# FIBER SECTION properties -------------------------------------------------------------
# symmetric section
# y
# ^
# |
# --------------------- -- --
# | o o o | | -- cover
# | | |
# | | |
# z <--- | + | H
# | | |
# | | |
# | o o o | | -- cover
# --------------------- -- --
# |-------- B --------|
#
# RC section:
set coverY [expr $HCol/2.0]; # The distance from the section z-axis to the edge of the cover concrete -- outer edge of cover concrete
set coverZ [expr $BCol/2.0]; # The distance from the section y-axis to the edge of the cover concrete -- outer edge of cover concrete
set coreY [expr $coverY-$coverCol]
set coreZ [expr $coverZ-$coverCol]
set nfY 16; # number of fibers for concrete in y-direction
set nfZ 4; # number of fibers for concrete in z-direction


#=================================================================================================================
# where I modified:

set ColSecTag2 111;

section fiberSec $ColSecTag2 {; # Define the fiber section 本來為 $ColSecTag 我改成 $ColSecTag2
patch quadr $IDconcU $nfZ $nfY -$coverY $coverZ -$coverY -$coverZ $coverY -$coverZ $coverY $coverZ; # Define the concrete patch
layer straight $IDreinf $numBarsCol $barAreaCol -$coreY $coreZ -$coreY -$coreZ; # top layer reinfocement
layer straight $IDreinf $numBarsCol $barAreaCol $coreY $coreZ $coreY -$coreZ; # bottom layer reinforcement
}; # end of fibersection definition


set ColMatTagShear 333;

uniaxialMaterial Elastic $ColMatTagShear 0. ; # set zero stiffness for test

# NewSecTag MatTag ExsistingSecTag
section Aggregator $ColSecTag $ColMatTagShear Vy -section $ColSecTag2 ;
#=================================================================================================================


# define geometric transformation: performs a linear geometric transformation of beam stiffness and resisting force from the basic system to the global-coordinate system
set ColTransfTag 1; # associate a tag to column transformation
geomTransf Linear $ColTransfTag ;

# element connectivity:
set numIntgrPts 5; # number of integration points for force-based element
element nonlinearBeamColumn 1 1 2 $numIntgrPts $ColSecTag $ColTransfTag; # self-explanatory when using variables

# Define RECORDERS -------------------------------------------------------------
recorder Node -file Data/DFree.out -time -node 2 -dof 1 2 3 disp; # displacements of free nodes
recorder Node -file Data/DBase.out -time -node 1 -dof 1 2 3 disp; # displacements of support nodes
recorder Node -file Data/RBase.out -time -node 1 -dof 1 2 3 reaction; # support reaction
recorder Drift -file Data/Drift.out -time -iNode 1 -jNode 2 -dof 1 -perpDirn 2 ; # lateral drift
recorder Element -file Data/FCol.out -time -ele 2 globalForce; # element forces -- column
recorder Element -file Data/ForceColSec1.out -time -ele 1 section 1 force; # Column section forces, axial and moment, node i
recorder Element -file Data/DefoColSec1.out -time -ele 1 section 1 deformation; # section deformations, axial and curvature, node i
recorder Element -file Data/ForceColSec$numIntgrPts.out -time -ele 1 section $numIntgrPts force; # Column section forces, axial and moment, node j
recorder Element -file Data/DefoColSec$numIntgrPts.out -time -ele 1 section 1 deformation; # section deformations, axial and curvature, node j


# define GRAVITY -------------------------------------------------------------
pattern Plain 1 Linear {
load 2 0 -$PCol 0
}

# Gravity-analysis parameters -- load-controlled static analysis
set Tol 1.0e-8; # convergence tolerance for test
constraints Plain; # how it handles boundary conditions
numberer Plain; # renumber dof's to minimize band-width (optimization), if you want to
system BandGeneral; # how to store and solve the system of equations in the analysis
test NormDispIncr $Tol 6 ; # determine if convergence has been achieved at the end of an iteration step
algorithm Newton; # use Newton's solution algorithm: updates tangent stiffness at every iteration
set NstepGravity 10; # apply gravity in 10 steps
set DGravity [expr 1./$NstepGravity]; # first load increment;
integrator LoadControl $DGravity; # determine the next time step for an analysis
analysis Static; # define type of analysis static or transient
analyze $NstepGravity; # apply gravity
# ------------------------------------------------- maintain constant gravity loads and reset time to zero
loadConst -time 0.0

puts "Model Built"

# STATIC PUSHOVER ANALYSIS --------------------------------------------------------------------------------------------------
#
# we need to set up parameters that are particular to the model.
set IDctrlNode 2; # node where displacement is read for displacement control
set IDctrlDOF 1; # degree of freedom of displacement read for displacement contro
set Dmax [expr 0.01*$LCol]; # maximum displacement of pushover. push to 10% drift.
set Dincr [expr 0.001*$LCol]; # displacement increment for pushover. you want this to be very small, but not too small to slow down the analysis

# create load pattern for lateral pushover load
set Hload $Weight; # define the lateral load as a proportion of the weight so that the pseudo time equals the lateral-load coefficient when using linear load pattern
pattern Plain 200 Linear {; # define load pattern -- generalized
load 2 $Hload 0.0 0.0 0.0 0.0 0.0; # define lateral load in static lateral analysis
}

# ----------- set up analysis parameters
# CONSTRAINTS handler -- Determines how the constraint equations are enforced in the analysis (http://opensees.berkeley.edu/OpenSees/m ... al/617.htm)
# Plain Constraints -- Removes constrained degrees of freedom from the system of equations (only for homogeneous equations)
# Lagrange Multipliers -- Uses the method of Lagrange multipliers to enforce constraints
# Penalty Method -- Uses penalty numbers to enforce constraints --good for static analysis with non-homogeneous eqns (rigidDiaphragm)
# Transformation Method -- Performs a condensation of constrained degrees of freedom
constraints Plain;

# DOF NUMBERER (number the degrees of freedom in the domain): (http://opensees.berkeley.edu/OpenSees/m ... al/366.htm)
# determines the mapping between equation numbers and degrees-of-freedom
# Plain -- Uses the numbering provided by the user
# RCM -- Renumbers the DOF to minimize the matrix band-width using the Reverse Cuthill-McKee algorithm
numberer Plain

# SYSTEM (http://opensees.berkeley.edu/OpenSees/m ... al/371.htm)
# Linear Equation Solvers (how to store and solve the system of equations in the analysis)
# -- provide the solution of the linear system of equations Ku = P. Each solver is tailored to a specific matrix topology.
# ProfileSPD -- Direct profile solver for symmetric positive definite matrices
# BandGeneral -- Direct solver for banded unsymmetric matrices
# BandSPD -- Direct solver for banded symmetric positive definite matrices
# SparseGeneral -- Direct solver for unsymmetric sparse matrices
# SparseSPD -- Direct solver for symmetric sparse matrices
# UmfPack -- Direct UmfPack solver for unsymmetric matrices
system BandGeneral

# TEST: # convergence test to
# Convergence TEST (http://opensees.berkeley.edu/OpenSees/m ... al/360.htm)
# -- Accept the current state of the domain as being on the converged solution path
# -- determine if convergence has been achieved at the end of an iteration step
# NormUnbalance -- Specifies a tolerance on the norm of the unbalanced load at the current iteration
# NormDispIncr -- Specifies a tolerance on the norm of the displacement increments at the current iteration
# EnergyIncr-- Specifies a tolerance on the inner product of the unbalanced load and displacement increments at the current iteration
set Tol 1.e-8; # Convergence Test: tolerance
set maxNumIter 6; # Convergence Test: maximum number of iterations that will be performed before "failure to converge" is returned
set printFlag 0; # Convergence Test: flag used to print information on convergence (optional) # 1: print information on each step;
set TestType EnergyIncr ; # Convergence-test type
test $TestType $Tol $maxNumIter $printFlag;

# Solution ALGORITHM: -- Iterate from the last time step to the current (http://opensees.berkeley.edu/OpenSees/m ... al/682.htm)
# Linear -- Uses the solution at the first iteration and continues
# Newton -- Uses the tangent at the current iteration to iterate to convergence
# ModifiedNewton -- Uses the tangent at the first iteration to iterate to convergence
set algorithmType Newton
algorithm $algorithmType;

# Static INTEGRATOR: -- determine the next time step for an analysis (http://opensees.berkeley.edu/OpenSees/m ... al/689.htm)
# LoadControl -- Specifies the incremental load factor to be applied to the loads in the domain
# DisplacementControl -- Specifies the incremental displacement at a specified DOF in the domain
# Minimum Unbalanced Displacement Norm -- Specifies the incremental load factor such that the residual displacement norm in minimized
# Arc Length -- Specifies the incremental arc-length of the load-displacement path
# Transient INTEGRATOR: -- determine the next time step for an analysis including inertial effects
# Newmark -- The two parameter time-stepping method developed by Newmark
# HHT -- The three parameter Hilbert-Hughes-Taylor time-stepping method
# Central Difference -- Approximates velocity and acceleration by centered finite differences of displacement
integrator DisplacementControl $IDctrlNode $IDctrlDOF $Dincr

# ANALYSIS -- defines what type of analysis is to be performed (http://opensees.berkeley.edu/OpenSees/m ... al/324.htm)
# Static Analysis -- solves the KU=R problem, without the mass or damping matrices.
# Transient Analysis -- solves the time-dependent analysis. The time step in this type of analysis is constant. The time step in the output is also constant.
# variableTransient Analysis -- performs the same analysis type as the Transient Analysis object. The time step, however, is variable. This method is used when
# there are convergence problems with the Transient Analysis object at a peak or when the time step is too small. The time step in the output is also variable.
analysis Static

# --------------------------------- perform Static Pushover Analysis
set Nsteps [expr int($Dmax/$Dincr)]; # number of pushover analysis steps
set ok [analyze $Nsteps]; # this will return zero if no convergence problems were encountered

# ---------------------------------- in case of convergence problems
if {$ok != 0} {
# change some analysis parameters to achieve convergence
# performance is slower inside this loop
set ok 0;
set controlDisp 0.0; # start from zero
set D0 0.0; # start from zero
set Dstep [expr ($controlDisp-$D0)/($Dmax-$D0)]
while {$Dstep < 1.0 && $ok == 0} {
set controlDisp [nodeDisp $IDctrlNode $IDctrlDOF ]
set Dstep [expr ($controlDisp-$D0)/($Dmax-$D0)]
set ok [analyze 1 ]
if {$ok != 0} {
puts "Trying Newton with Initial Tangent .."
test NormDispIncr $Tol 2000 0
algorithm Newton -initial
set ok [analyze 1 ]
test $TestType $Tol $maxNumIter 0
algorithm $algorithmType
}
if {$ok != 0} {
puts "Trying Broyden .."
algorithm Broyden 8
set ok [analyze 1 ]
algorithm $algorithmType
}
if {$ok != 0} {
puts "Trying NewtonWithLineSearch .."
algorithm NewtonLineSearch .8
set ok [analyze 1 ]
algorithm $algorithmType
}
}
}; # end if ok !0

puts "DonePushover"
Chia-hung Lin, Ph.D. Candidate, National Taiwan University
silvia
Posts: 3909
Joined: Tue Jan 11, 2005 7:44 am
Location: Degenkolb Engineers
Contact:

Post by silvia »

zero stiffness is bound to give you problems, right?
Silvia Mazzoni, PhD
Structural Consultant
Degenkolb Engineers
235 Montgomery Street, Suite 500
San Francisco, CA. 94104
rcsoul
Posts: 17
Joined: Mon Jun 13, 2005 4:27 am
Location: Integer Engineering Consultants, Ltd.

Post by rcsoul »

Yes, silvia. I can't avoid zero stiffness.
Chia-hung Lin, Ph.D. Candidate, National Taiwan University
Post Reply